MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsInorganic speciesSulfur (S) → sulfur hexafluoride

FORMULA:SF6
CAS RN:2551-62-4
STRUCTURE
(FROM NIST):
InChIKey:SFZCNBIFKDRMGX-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
2.4×10−6 3100 Warneck and Williams (2012) L
2.5×10−6 2100 Fernández-Prini et al. (2003) L 3)
2.4×10−6 2400 Wilhelm et al. (1977) L
2.3×10−6 2700 Bullister et al. (2002) M 182)
1.4×10−6 Guitart et al. (1989) M 14)
2.4×10−6 Park et al. (1982) M
2.5×10−6 260 Cosgrove and Walkley (1981) M 11) 42)
1.7×10−6 Longo et al. (1970) M 14)
1.7×10−6 Power and Stegall (1970) M 14)
Shoor et al. (1969) M 183)
2.4×10−6 2400 Ashton et al. (1968) M 184)
2.2×10−6 3500 Friedman (1954) M
2.2×10−6 Giardino et al. (1988) V
2.6×10−6 Hayer et al. (2022) Q 20)
2.2×10−5 Keshavarz et al. (2022) Q
2.6×10−5 Duchowicz et al. (2020) Q 185)
3200 Kühne et al. (2005) Q
2.2×10−6 Duchowicz et al. (2020) ? 21) 186)
2800 Kühne et al. (2005) ?
2.4×10−6 2400 Yaws et al. (1999) ? 21)
1.9×10−6 Abraham and Weathersby (1994) ? 21)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
  • Ashton, J. T., Dawe, R. A., Miller, K. W., Smith, E. B., & Stickings, B. J.: The solubility of certain gaseous fluorine compounds in water, J. Chem. Soc. A, pp. 1793–1796, doi:10.1039/J19680001793 (1968).
  • Bullister, J. L., Wisegarver, D. P., & Menzia, F. A.: The solubility of sulfur hexafluoride in water and seawater, Deep-Sea Res. I, 49, 175–187, doi:10.1016/S0967-0637(01)00051-6 (2002).
  • Cosgrove, B. A. & Walkley, J.: Solubilities of gases in H2O and 2H2O, J. Chromatogr., 216, 161–167, doi:10.1016/S0021-9673(00)82344-4 (1981).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Fernández-Prini, R., Alvarez, J. L., & Harvey, A. H.: Henry’s constants and vapor-liquid distribution constants for gaseous solutes in H2O and D2O at high temperatures, J. Phys. Chem. Ref. Data, 32, 903–916, doi:10.1063/1.1564818 (2003).
  • Friedman, H. L.: The solubilities of sulfur hexafluoride in water and of the rare gases, sulfur hexafluoride and osmium tetroxide in nitromethane, J. Am. Chem. Soc., 76, 3294–3297, doi:10.1021/JA01641A065 (1954).
  • Giardino, N. J., Andelman, J. B., Borrazzo, J. E., & Davidson, C. I.: Sulfur hexafluoride as a surrogate for volatilization of organics from indoor water uses, J. Air Pollut. Control Assoc., 38, 278–279, doi:10.1080/08940630.1988.10466379 (1988).
  • Guitart, R., Puigdemont, F., & Arboix, M.: Rapid headspace gas chromatographic method for the determination of liquid/gas partition coefficients, J. Chromatogr., 491, 271–280, doi:10.1016/S0378-4347(00)82845-5 (1989).
  • Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Longo, L. D., Delivoria-Papadopoulos, M., Power, G. G., Hill, E. P., & Forster, R. E.: Diffusion equilibration of inert gases between maternal and fetal placental capillaires, Am. J. Physiol., 219, 561–569, doi:10.1152/AJPLEGACY.1970.219.3.561 (1970).
  • Park, T., Rettich, T. R., Battino, R., Peterson, D., & Wilhelm, E.: Solubility of gases in liquids. 14. Bunsen coefficients for several fluorine-containing gases (Freons) dissolved in water at 298.15K, J. Chem. Eng. Data, 27, 324–326, doi:10.1021/JE00029A027 (1982).
  • Power, G. G. & Stegall, H.: Solubility of gases in human red blood cell ghosts, J. Appl. Physiol., 29, 145–149, doi:10.1152/JAPPL.1970.29.2.145 (1970).
  • Shoor, S. K., Walker, Jr., R. D., & Gubbins, K. E.: Salting out of nonpolar gases in aqueous potassium hydroxide solutions, J. Phys. Chem., 73, 312–317, doi:10.1021/J100722A006 (1969).
  • Warneck, P. & Williams, J.: The Atmospheric Chemist’s Companion: Numerical Data for Use in the Atmospheric Sciences, Springer Verlag, doi:10.1007/978-94-007-2275-0 (2012).
  • Wilhelm, E., Battino, R., & Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, doi:10.1021/CR60306A003 (1977).
  • Yaws, C. L., Hopper, J. R., Wang, X., Rathinsamy, A. K., & Pike, R. W.: Calculating solubility & Henry’s law constants for gases in water, Chem. Eng., pp. 102–105 (1999).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

3) The vapor pressure for water from Wagner and Pruss (1993) was used to calculate Hs.
11) Measured at high temperature and extrapolated to T = 298.15 K.
14) Value at T = 310 K.
20) Calculated using machine learning matrix completion methods (MCMs).
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
42) Fitting the temperature dependence dlnH/d(1/T) produced a very low correlation coefficient (r2 < 0.5). The data should be treated with caution.
182) The data from Bullister et al. (2002) were fitted to the three-parameter equation: Hscp= exp( −281.50843 +14256.43847/T +38.73689 ln(T)) mol m−3 Pa−1, with T in K.
183) The data presented for SF6 in Table II of Shoor et al. (1969) appear to be incorrect and are not reproduced here.
184) The data from Ashton et al. (1968) were fitted to the three-parameter equation: Hscp= exp( −431.90650 +20715.81650/T +61.33841 ln(T)) mol m−3 Pa−1, with T in K.
185) Value from the validation set for checking whether the model is satisfactory for compounds that are absent from the training set.
186) Experimental value, extracted from HENRYWIN.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *