MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with oxygen (O)Aldehydes (RCHO) → 3-methylbutanal

FORMULA:C5H10O
TRIVIAL NAME: isovaleraldehyde
CAS RN:590-86-3
STRUCTURE
(FROM NIST):
InChIKey:YGHRJJRRZDOVPD-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
1.1×10−2 10000 Bruneel et al. (2016) M 33)
2.4×10−2 6100 Wieland et al. (2015) M 470)
2.1×10−2 Kim and Kim (2014) M
2.6×10−2 Pollien et al. (2003) M
2.0×10−2 Nelson and Hoff (1968) M 298)
2.4×10−2 Duchowicz et al. (2020) V 187)
2.5×10−2 HSDB (2015) V
5.2×10−2 Yaws (2003) X 238)
3.8×10−2 Duchowicz et al. (2020) Q
5.9×10−2 Wang et al. (2017) Q 81) 239)
1.1×10−1 Wang et al. (2017) Q 81) 240)
4.5×10−2 Wang et al. (2017) Q 81) 241)
5.5×10−2 Gharagheizi et al. (2010) Q 247)
7.3×10−2 Hilal et al. (2008) Q
9.1×10−2 Modarresi et al. (2007) Q 68)
9.8×10−3 Hertel et al. (2007) Q 469)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Bruneel, J., Walgraeve, C., Van Huffel, K., & Van Langenhove, H.: Determination of the gas-to-liquid partitioning coefficients using a new dynamic absorption method (DynAb method), Chem. Eng. J., 283, 544–552, doi:10.1016/J.CEJ.2015.07.053 (2016).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
  • Hertel, M. O., Scheuren, H., Sommer, K., & Glas, K.: Limiting separation factors and limiting activity coefficients for hexanal, 2-methylbutanal, 3-methylbutanal, and dimethylsulfide in water at (98.1 to 99.0)C, J. Chem. Eng. Data, 52, 148–150, doi:10.1021/JE060324O (2007).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • HSDB: Hazardous Substances Data Bank, TOXicology data NETwork (TOXNET), National Library of Medicine (US), URL https://www.nlm.nih.gov/toxnet/Accessing_HSDB_Content_from_PubChem.html (2015).
  • Kim, Y.-H. & Kim, K.-H.: Recent advances in thermal desorption-gas chromatography-mass spectrometery method to eliminate the matrix effect between air and water samples: Application to the accurate determination of Henry’s law constant, J. Chromatogr. A, 1342, 78–85, doi:10.1016/J.CHROMA.2014.03.040 (2014).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nelson, P. E. & Hoff, J. E.: Food volatiles: Gas chromatographic determination of partition coefficients in water-lipid systems, Int. J. Mass Spectrom., 228, 479–482, doi:10.1111/J.1365-2621.1968.TB03659.X (1968).
  • Pollien, P., Jordan, A., Lindinger, W., & Yeretzian, C.: Liquid-air partitioning of volatile compounds in coffee: dynamic measurements using proton-transfer-reaction mass spectrometry, Int. J. Mass Spectrom., 228, 69–80, doi:10.1016/S1387-3806(03)00197-0 (2003).
  • Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
  • Wieland, F., Neff, A., Gloess, A. N., Poisson, L., Atlan, S., Larrain, D., Prêtre, D., Blank, I., & Yeretzian, C.: Temperature dependence of Henry’s law constants: An automated, high-throughput gas stripping cell design coupled to PTR-ToF-MS, Int. J. Mass Spectrom., 387, 69–77, doi:10.1016/J.IJMS.2015.07.015 (2015).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

33) Fitting the temperature dependence dlnH/d(1/T) produced a low correlation coefficient (r2 < 0.9). The data should be treated with caution.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
81) Value at T = 288 K.
187) Estimation based on the quotient between vapor pressure and water solubility, extracted from HENRYWIN.
238) Value given here as quoted by Gharagheizi et al. (2010).
239) Calculated using linear free energy relationships (LFERs).
240) Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC).
241) Calculated using COSMOtherm.
247) Calculated using a combination of a group contribution method and neural networks.
298) Value at T = 301 K.
469) Value at T = 372 K.
470) The data from Wieland et al. (2015) were fitted to the three-parameter equation: Hscp= exp( −176.35942 +12895.73116/T +22.70566 ln(T)) mol m−3 Pa−1, with T in K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *