MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with oxygen (O)Alcohols (ROH) → 2-propanol

FORMULA:C3H7OH
TRIVIAL NAME: isopropanol
CAS RN:67-63-0
STRUCTURE
(FROM NIST):
InChIKey:KFZMGEQAYNKOFK-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
1.2 7100 Burkholder et al. (2019) L 1)
1.2 7100 Burkholder et al. (2015) L 1)
1.2 6900 Brockbank (2013) L 1)
1.3 7500 Sander et al. (2011) L
1.3 7500 Sander et al. (2006) L
1.2 6200 Fogg and Sangster (2003) L
1.2 7000 Plyasunov and Shock (2000) L
1.1 8400 Hiatt (2013) M
6.8×10−1 Helburn et al. (2008) M
1.3 7300 Lin and Chou (2006) M
Cheng et al. (2004) M 330)
Cheng et al. (2003) M 330)
1.8×10−1 Ayuttaya et al. (2001) M 342)
1.0×10−3 Ayuttaya et al. (2001) M 343)
5.7×10−1 Ayuttaya et al. (2001) M 344)
1.1 Kim et al. (2000) M
9.2×10−1 Altschuh et al. (1999) M
1.2 Merk and Riederer (1997) M
5.8×10−1 Kaneko et al. (1994) M 14)
7.9×10−1 5700 Kolb et al. (1992) M 278)
1.4 Pividal et al. (1992) M 81)
9.8×10−1 Yu (1992) M 12)
1.2 7400 Snider and Dawson (1985) M
2.1 Mazza (1980) M
1.2 Rytting et al. (1978) M
1.2 Butler et al. (1935) M
1.2 7100 Fenclová et al. (2007) V 1)
1.2 7600 Fukuchi et al. (2002) V
1.7 Hine and Weimar (1965) R
7.6×10−1 Yaws (2003) X 259)
2.4 Dupeux et al. (2022) Q 260)
1.2 Hayer et al. (2022) Q 20)
9.0×10−1 Keshavarz et al. (2022) Q
4.8×10−1 Duchowicz et al. (2020) Q 185)
2.8×10−1 Wang et al. (2017) Q 81) 239)
1.0 Wang et al. (2017) Q 81) 240)
1.2 Wang et al. (2017) Q 81) 241)
1.2 Raventos-Duran et al. (2010) Q 243) 244)
6.2×10−1 Raventos-Duran et al. (2010) Q 245)
1.2 Raventos-Duran et al. (2010) Q 246)
4.3×10−1 Hilal et al. (2008) Q
7.0×10−1 Modarresi et al. (2007) Q 68)
6900 Kühne et al. (2005) Q
Yaffe et al. (2003) Q 358)
7.7×10−1 Yao et al. (2002) Q 230)
1.0 English and Carroll (2001) Q 231) 275)
1.1 Katritzky et al. (1998) Q
8.9×10−1 Yaws et al. (1997) Q
1.4 Russell et al. (1992) Q 280)
9.7×10−1 Suzuki et al. (1992) Q 233)
1.1 Nirmalakhandan and Speece (1988) Q
1.3 Taft et al. (1985) Q
1.2 Duchowicz et al. (2020) ? 21) 186)
6000 Kühne et al. (2005) ?
8.0×10−1 Yaws (1999) ? 21)
5.0×10−1 Abraham and Weathersby (1994) ? 21)
8.8×10−1 Yaws and Yang (1992) ? 21)
1.2 Abraham et al. (1990) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Altschuh, J., Brüggemann, R., Santl, H., Eichinger, G., & Piringer, O. G.: Henry’s law constants for a diverse set of organic chemicals: Experimental determination and comparison of estimation methods, Chemosphere, 39, 1871–1887, doi:10.1016/S0045-6535(99)00082-X (1999).
  • Ayuttaya, P. C. N., Rogers, T. N., Mullins, M. E., & Kline, A. A.: Henry’s law constants derived from equilibrium static cell measurements for dilute organic-water mixtures, Fluid Phase Equilib., 185, 359–377, doi:10.1016/S0378-3812(01)00484-8 (2001).
  • Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
  • Butler, J. A. V., Ramchandani, C. N., & Thomson, D. W.: The solubility of non-electrolytes. Part I. The free energy of hydration of some aliphatic alcohols, J. Chem. Soc., pp. 280–285, doi:10.1039/JR9350000280 (1935).
  • Cheng, W.-H., Chu, F.-S., & Liou, J.-J.: Air–water interface equilibrium partitioning coefficients of aromatic hydrocarbons, Atmos. Environ., 37, 4807–4815, doi:10.1016/J.ATMOSENV.2003.08.012 (2003).
  • Cheng, W.-H., Chou, M.-S., Perng, C.-H., & Chu, F.-S.: Determining the equilibrium partitioning coefficients of volatile organic compounds at an air–water interface, Chemosphere, 54, 935–942, doi:10.1016/J.CHEMOSPHERE.2003.08.038 (2004).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Dupeux, T., Gaudin, T., Marteau-Roussy, C., Aubry, J.-M., & Nardello-Rataj, V.: COSMO-RS as an effective tool for predicting the physicochemical properties of fragrance raw materials, Flavour Fragrance J., 37, 106–120, doi:10.1002/FFJ.3690 (2022).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Fenclová, D., Dohnal, V., Vrbka, P., & Laštovka, V.: Temperature dependence of limiting activity coefficients, Henry’s law constants, and related infinite dilution properties of branched (C3 and C4) alkanols in water, J. Chem. Eng. Data, 52, 989–1002, doi:10.1021/JE600567Z (2007).
  • Fogg, P. & Sangster, J.: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, John Wiley & Sons, Inc., ISBN 978-0-471-98651-5 (2003).
  • Fukuchi, K., Miyoshi, K., Watanabe, T., Yonezawa, S., & Arai, Y.: Measurement and correlation of infinite dilution activity coefficients of alkanol or ether in aqueous solution, Fluid Phase Equilib., 194-197, 937–945, doi:10.1016/S0378-3812(01)00675-6 (2002).
  • Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
  • Helburn, R., Albritton, J., Howe, G., Michael, L., & Franke, D.: Henry’s law constants for fragrance and organic solvent compounds in aqueous industrial surfactants, J. Chem. Eng. Data, 53, 1071–1079, doi:10.1021/JE700418A (2008).
  • Hiatt, M. H.: Determination of Henry’s law constants using internal standards with benchmark values, J. Chem. Eng. Data, 58, 902–908, doi:10.1021/JE3010535 (2013).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Hine, J. & Weimar, Jr., R. D.: Carbon basicity, J. Am. Chem. Soc., 87, 3387–3396, doi:10.1021/JA01093A018 (1965).
  • Kaneko, T., Wang, P. Y., & Sato, A.: Partition coefficients of some acetate esters and alcohols in water, blood, olive oil, and rat tissues, Occup. Environ. Med., 51, 68–72, doi:10.1136/OEM.51.1.68 (1994).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kim, B. R., Kalis, E. M., DeWulf, T., & Andrews, K. M.: Henry’s Law constants for paint solvents and their implications on volatile organic compound emissions from automotive painting, Water Environ. Res., 72, 65–74, doi:10.2175/106143000X137121 (2000).
  • Kolb, B., Welter, C., & Bichler, C.: Determination of partition coefficients by automatic equilibrium headspace gas chromatography by vapor phase calibration, Chromatographia, 34, 235–240, doi:10.1007/BF02268351 (1992).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Lin, J.-H. & Chou, M.-S.: Temperature effects on Henry’s law constants for four VOCs in air-activated sludge systems, Atmos. Environ., 40, 2469–2477, doi:10.1016/J.ATMOSENV.2005.12.037 (2006).
  • Mazza, G.: Relative volatilities of some onion flavour components, Int. J. Food Sci. Technol., 15, 35–41, doi:10.1111/J.1365-2621.1980.TB00916.X (1980).
  • Merk, S. & Riederer, M.: Sorption of volatile C1 to C6 alkanols in plant cuticles, J. Exp. Bot., 48, 1095–1104, doi:10.1093/JXB/48.5.1095 (1997).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
  • Pividal, K. A., Birtigh, A., & Sandler, S. I.: Infinite dilution activity coefficients for oxygenate systems determined using a differential static cell, J. Chem. Eng. Data, 37, 484–487, doi:10.1021/JE00008A025 (1992).
  • Plyasunov, A. V. & Shock, E. L.: Thermodynamic functions of hydration of hydrocarbons at 298.15K and 0.1MPa, Geochim. Cosmochim. Acta, 64, 439–468, doi:10.1016/S0016-7037(99)00330-0 (2000).
  • Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
  • Russell, C. J., Dixon, S. L., & Jurs, P. C.: Computer-assisted study of the relationship between molecular structure and Henry’s law constant, Anal. Chem., 64, 1350–1355, doi:10.1021/AC00037A009 (1992).
  • Rytting, J. H., Huston, L. P., & Higuchi, T.: Thermodynamic group contributions for hydroxyl, amino, and methylene groups, J. Pharm. Sci., 69, 615–618, doi:10.1002/JPS.2600670510 (1978).
  • Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, URL https://jpldataeval.jpl.nasa.gov (2006).
  • Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2011).
  • Snider, J. R. & Dawson, G. A.: Tropospheric light alcohols, carbonyls, and acetonitrile: Concentrations in the southwestern United States and Henry’s law data, J. Geophys. Res., 90, 3797–3805, doi:10.1029/JD090ID02P03797 (1985).
  • Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
  • Taft, R. W., Abraham, M. H., Doherty, R. M., & Kamlet, M. J.: The molecular properties governing solubilities of organic nonelectrolytes in water, Nature, 313, 384–386, doi:10.1038/313384A0 (1985).
  • Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
  • Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
  • Yao, X., aand X. Zhang, M. L., Hu, Z., & Fan, B.: Radial basis function network-based quantitative structure-property relationship for the prediction of Henry’s law constant, Anal. Chim. Acta, 462, 101–117, doi:10.1016/S0003-2670(02)00273-8 (2002).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
  • Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
  • Yaws, C. L., Hopper, J. R., Sheth, S. D., Han, M., & Pike, R. W.: Solubility and Henry’s law constant for alcohols in water, Waste Manage., 17, 541–547, doi:10.1016/S0956-053X(97)10057-5 (1997).
  • Yu, H.-Z.: The use of Henry’s law constants in the determination of factors that influence VOC concentration in aqueous and gaseous phases in wastewater treatment plant, Master’s thesis, New Jersey Institute of Technology, USA (1992).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
12) Value at T = 293 K.
14) Value at T = 310 K.
20) Calculated using machine learning matrix completion methods (MCMs).
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
81) Value at T = 288 K.
185) Value from the validation set for checking whether the model is satisfactory for compounds that are absent from the training set.
186) Experimental value, extracted from HENRYWIN.
230) Yao et al. (2002) compared two QSPR methods and found that radial basis function networks (RBFNs) are better than multiple linear regression. In their paper, they provide neither a definition nor the unit of their Henry's law constants. Comparing the values with those that they cite from Yaws (1999), it is assumed that they use the variant Hvpx and the unit atm.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
233) Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details.
239) Calculated using linear free energy relationships (LFERs).
240) Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC).
241) Calculated using COSMOtherm.
243) Value from the training dataset.
244) Calculated using the GROMHE model.
245) Calculated using the SPARC approach.
246) Calculated using the HENRYWIN method.
259) Value given here as quoted by Dupeux et al. (2022).
260) Calculated using the COSMO-RS method.
275) Value from the test dataset.
278) Extrapolated from data measured between 40 °C and 80 °C.
280) Value from the training set.
330) It was found that Hs changes with the concentration of the solution.
342) Value obtained by applying the EPICS method; see Ayuttaya et al. (2001) for details.
343) Value obtained by applying the static cell (linear form) method; see Ayuttaya et al. (2001) for details.
344) Value obtained by applying the direct phase concentration ratio method; see Ayuttaya et al. (2001) for details.
358) Yaffe et al. (2003) list this species twice in their table, with different values. As it is unclear which is correct, the data are not reproduced here.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *