MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with chlorine (Cl)Chlorocarbons (C, H, Cl) → trichloromethane

FORMULA:CHCl3
TRIVIAL NAME: chloroform
CAS RN:67-66-3
STRUCTURE
(FROM NIST):
InChIKey:HEDRZPFGACZZDS-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
2.7×10−3 4200 Schwardt et al. (2021) L 1)
2.6×10−3 4300 Burkholder et al. (2019) L
2.0×10−3 4400 Burkholder et al. (2019) L 71)
2.6×10−3 4300 Burkholder et al. (2015) L
2.0×10−3 4400 Burkholder et al. (2015) L 71)
2.3×10−3 4200 Brockbank (2013) L 1) 656)
2.5×10−3 4500 Sander et al. (2011) L
2.6×10−3 4300 Warneck (2007) L
2.5×10−3 4500 Sander et al. (2006) L
2.5×10−3 4500 Staudinger and Roberts (2001) L
2.5×10−3 4500 Staudinger and Roberts (1996) L
2.6×10−3 Mackay and Shiu (1981) L
1.6×10−3 Steward et al. (1973) L 14)
2.6×10−3 3900 Allott et al. (1973) L
2.8×10−3 4500 Hiatt (2013) M
2.5×10−3 3900 Chen et al. (2012) M
3.1×10−3 Ruiz-Bevia and Fernandez-Torres (2010) M
2.7×10−3 4500 Lutsyk et al. (2005) M
1.4×10−3 Zhang et al. (2002) M 14)
2.3×10−3 4200 Görgényi et al. (2002) M 657)
2.0×10−3 4600 Moore (2000) M 71)
2.4×10−3 David et al. (2000) M 73)
2.7×10−3 Ryu and Park (1999) M
3.0×10−3 Dohnal and Hovorka (1999) M 12)
3.0×10−3 Chiang et al. (1998) M 12)
3.4×10−3 Welke et al. (1998) M
3.2×10−3 Hovorka and Dohnal (1997) M 12)
2.7×10−3 3400 Kondoh and Nakajima (1997) M
2.6×10−3 3400 Park et al. (1997) M
2.2×10−3 4700 Turner et al. (1996) M
2.2×10−3 4200 Moore et al. (1995) M 71) 658)
2.6×10−3 4400 Dewulf et al. (1995) M
2.5×10−3 Hoff et al. (1993) M
2.4×10−3 Li et al. (1993) M
2.6×10−3 4000 Wright et al. (1992) M 659)
4.8×10−3 7300 Tancrède and Yanagisawa (1990) M
2.4×10−3 2000 Lamarche and Droste (1989) M 347)
2.1×10−3 Guitart et al. (1989) M 14)
2.3×10−3 5000 Ashworth et al. (1988) M 279)
2.7×10−3 4600 Gossett (1987) M
2.6×10−3 4300 Munz and Roberts (1987) M
2.9×10−3 Hellmann (1987) M 88)
3.3×10−3 Munz and Roberts (1986) M
2.5×10−3 4300 Gossett et al. (1985) M
2.5×10−3 5200 Nicholson et al. (1984) M
2.3×10−3 4200 Lincoff and Gossett (1984) M
2.0×10−3 3900 Hunter-Smith et al. (1983) M 71) 660)
2.5×10−3 4000 Leighton and Calo (1981) M
1.5×10−3 5600 Ervin et al. (1980) M
2.9×10−3 Warner et al. (1980) M
2.4×10−3 7200 Balls (1980) M
1.4×10−3 Sato and Nakajima (1979b) M 14)
3.5×10−3 Pearson and McConnell (1975) M 12) 651)
2.8×10−3 5100 Hartkopf and Karger (1973) M
1.6×10−3 Bachofen and Farhi (1971) M 14)
2.6×10−3 4600 Rex (1906) M
2.6×10−3 Mackay et al. (2006b) V
2.6×10−3 4400 Fogg and Sangster (2003) V
2.5×10−3 Park et al. (1997) V
2.6×10−3 Mackay et al. (1993) V
2.6×10−3 Hwang et al. (1992) V
5.5×10−3 McLachlan et al. (1990) V 375)
3.1×10−3 Warner et al. (1980) V
2.8×10−3 Smith and Bomberger (1980) V 24)
2.5×10−3 Dilling (1977) V 653)
9.0×10−3 Dilling (1977) V 154)
2.3×10−3 Hine and Mookerjee (1975) V
2.5×10−3 Dilling et al. (1975) V
2.2×10−3 4700 Winkler (1906) V
2.5×10−3 4100 Barr and Newsham (1987) X 299)
3.0×10−3 4400 Goldstein (1982) X 299)
2.4×10−3 Harrison et al. (1993) C
3.4×10−3 Harrison et al. (1993) C
3.4×10−3 Ryan et al. (1988) C
2.7×10−3 Nicholson et al. (1984) C
2.1×10−3 Nicholson et al. (1984) C 12)
2.9×10−3 Shen (1982) C
3.1×10−3 Dilling (1977) C
3.1×10−3 Dilling et al. (1975) C
2.6×10−3 Hayer et al. (2022) Q 20)
1.1×10−3 Wang et al. (2017) Q 81) 239)
4.3×10−3 Wang et al. (2017) Q 81) 240)
4.5×10−3 Wang et al. (2017) Q 81) 241)
3.7×10−3 Gharagheizi et al. (2012) Q
2.5×10−3 Raventos-Duran et al. (2010) Q 243) 244)
3.1×10−3 Raventos-Duran et al. (2010) Q 245)
3.1×10−3 Raventos-Duran et al. (2010) Q 246)
3.2×10−3 Hilal et al. (2008) Q
1.3×10−3 Modarresi et al. (2007) Q 68)
3300 Kühne et al. (2005) Q
4.1×10−3 Yao et al. (2002) Q 230)
1.0×10−3 English and Carroll (2001) Q 231) 275)
2.6×10−4 Katritzky et al. (1998) Q
3.9×10−3 Nirmalakhandan and Speece (1988) Q
2.3×10−3 Arbuckle (1983) Q
2.3×10−3 Mackay et al. (2006b) ?
4300 Kühne et al. (2005) ?
2.4×10−3 Yaws (1999) ? 21)
1.6×10−3 Abraham and Weathersby (1994) ? 21)
2.3×10−3 Mackay et al. (1993) ?
2.4×10−3 Yaws and Yang (1992) ? 21)
2.5×10−3 Abraham et al. (1990) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Allott, P. R., Steward, A., Flook, V., & Mapleson, W. W.: Variation with temperature of the solubilities of inhaled anaesthestics in water, oil and biological media, Br. J. Anaesth., 45, 294–300, doi:10.1093/BJA/45.3.294 (1973).
  • Arbuckle, W. B.: Estimating activity coefficients for use in calculating environmental parameters, Environ. Sci. Technol., 17, 537–542, doi:10.1021/ES00115A008 (1983).
  • Ashworth, R. A., Howe, G. B., Mullins, M. E., & Rogers, T. N.: Air–water partitioning coefficients of organics in dilute aqueous solutions, J. Hazard. Mater., 18, 25–36, doi:10.1016/0304-3894(88)85057-X (1988).
  • Bachofen, H. & Farhi, L. E.: Simple manometric apparatus for measuring partition coefficients of highly soluble gases, J. Appl. Physiol., 30, 136–139, doi:10.1152/JAPPL.1971.30.1.136 (1971).
  • Balls, P. W.: Gas transfer across air–water interfaces, Ph.D. thesis, University of East Anglia, Great Britain (1980).
  • Barr, R. S. & Newsham, D. M. T.: Phase equilibria in very dilute mixtures of water and chlorinated hydrocarbons. Part I. Experimental results, Fluid Phase Equilib., 35, 189–205, doi:10.1016/0378-3812(87)80012-2 (1987).
  • Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
  • Chen, F., Freedman, D. L., Falta, R. W., & Murdoch, L. C.: Henry’s law constants of chlorinated solvents at elevated temperatures, Chemosphere, 86, 156–165, doi:10.1016/J.CHEMOSPHERE.2011.10.004 (2012).
  • Chiang, P.-C., Hung, C.-H., Mar, J. C., & Chang, E. E.: Henry’s constants and mass transfer coefficients of halogenated organic pollutants in an air stripping packed column, Wat. Sci. Tech., 38, 287–294 (1998).
  • David, M. D., Fendinger, N. J., & Hand, V. C.: Determination of Henry’s law constants for organosilicones in actual and simulated wastewater, Environ. Sci. Technol., 34, 4554–4559, doi:10.1021/ES991204M (2000).
  • Dewulf, J., Drijvers, D., & van Langenhove, H.: Measurement of Henry’s law constant as function of temperature and salinity for the low temperature range, Atmos. Environ., 29, 323–331, doi:10.1016/1352-2310(94)00256-K (1995).
  • Dilling, W. L.: Interphase transfer processes. II. Evaporation rates of chloro methanes, ethanes, ethylenes, propanes, and propylenes from dilute aqueous solutions. Comparisons with theoretical predictions, Environ. Sci. Technol., 11, 405–409, doi:10.1021/ES60127A009 (1977).
  • Dilling, W. L., Tefertiller, N. B., & Kallos, G. J.: Evaporation rates and reactivities of methylene chloride, chloroform, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and other chlorinated compounds in dilute aqueous solutions, Environ. Sci. Technol., 9, 833–838, doi:10.1021/ES60107A008 (1975).
  • Dohnal, V. & Hovorka, Š.: Exponential saturator: a novel gas-liquid partitioning technique for measurement of large limiting activity coefficients, Ind. Eng. Chem. Res., 38, 2036–2043, doi:10.1021/IE980743H (1999).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Ervin, A. L., Mangone, M. A., & Singley, J. E.: Trace organics removal by air stripping, in: Proceedings of the Annual Conference of the American Water Works Association, pp. 507–530 (1980).
  • Fogg, P. & Sangster, J.: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, John Wiley & Sons, Inc., ISBN 978-0-471-98651-5 (2003).
  • Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
  • Goldstein, D. J.: Air and steam stripping of toxic pollutants, Appendix 3: Henry’s law constants, Tech. Rep. EPA-68-03-002, Industrial Environmental Research Laboratory, Cincinnati, OH, USA (1982).
  • Görgényi, M., Dewulf, J., & Van Langenhove, H.: Temperature dependence of Henry’s law constant in an extended temperature range, Chemosphere, 48, 757–762, doi:10.1016/S0045-6535(02)00131-5 (2002).
  • Gossett, J. M.: Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons, Environ. Sci. Technol., 21, 202–208, doi:10.1021/ES00156A012 (1987).
  • Gossett, J. M., Cameron, C. E., Eckstrom, B. P., Goodman, C., & Lincoff, A. H.: Mass transfer coefficients and Henry’s constants for packed-tower air stripping of volatile organics: Measurements and Correlations, Final Report ESL-TR-85-18, Engineering and Services Laboratory, Tyndall Air Force Base, FL (1985).
  • Guitart, R., Puigdemont, F., & Arboix, M.: Rapid headspace gas chromatographic method for the determination of liquid/gas partition coefficients, J. Chromatogr., 491, 271–280, doi:10.1016/S0378-4347(00)82845-5 (1989).
  • Harrison, D. P., Valsaraj, K. T., & Wetzel, D. M.: Air stripping of organics from ground water, Waste Manage., 13, 417–429, doi:10.1016/0956-053X(93)90074-7 (1993).
  • Hartkopf, A. & Karger, B. L.: Study of the interfacial properties of water by gas chromatography, Acc. Chem. Res., 6, 209–216, doi:10.1021/AR50066A006 (1973).
  • Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
  • Hellmann, H.: Model tests on volatilization of organic trace substances in surfaces waters, Fresenius J. Anal. Chem., 328, 475–479, doi:10.1007/BF00475967 (1987).
  • Hiatt, M. H.: Determination of Henry’s law constants using internal standards with benchmark values, J. Chem. Eng. Data, 58, 902–908, doi:10.1021/JE3010535 (2013).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
  • Hoff, J. T., Mackay, D., Gillham, R., & Shiu, W. Y.: Partitioning of organic chemicals at the air–water interface in environmental systems, Environ. Sci. Technol., 27, 2174–2180, doi:10.1021/ES00047A026 (1993).
  • Hovorka, Š. & Dohnal, V.: Determination of air–water partitioning of volatile halogenated hydrocarbons by the inert gas stripping method, J. Chem. Eng. Data, 42, 924–933, doi:10.1021/JE970046G (1997).
  • Hunter-Smith, R. J., Balls, P. W., & Liss, P. S.: Henry’s law constants and the air-sea exchange of various low molecular weight halocarbon gases, Tellus, 35B, 170–176, doi:10.1111/J.1600-0889.1983.TB00021.X (1983).
  • Hwang, Y.-L., Olson, J. D., & Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, doi:10.1021/IE00007A022 (1992).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Kondoh, H. & Nakajima, T.: Optimization of headspace cryofocus gas chromatography/mass spectrometry for the analysis of 54 volatile organic compounds, and the measurement of their Henry’s constants, J. Environ. Chem., 7, 81–89, doi:10.5985/JEC.7.81 (1997).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Lamarche, P. & Droste, R. L.: Air stripping mass transfer correlations for volatile organics, J. Am. Water Works Assoc., 81, 78–89, doi:10.1002/J.1551-8833.1989.TB03326.X (1989).
  • Leighton, D. T. & Calo, J. M.: Distribution coefficients of chlorinated hydrocarbons in dilute air–water systems for groundwater contamination applications, J. Chem. Eng. Data, 26, 382–385, doi:10.1021/JE00026A010 (1981).
  • Li, J., Dallas, A. J., Eikens, D. I., Carr, P. W., Bergmann, D. L., Hait, M. J., & Eckert, C. A.: Measurement of large infinite dilution activity coefficients of nonelectrolytes in water by inert gas stripping and gas chromatography, Anal. Chem., 65, 3212–3218, doi:10.1021/AC00070A008 (1993).
  • Lincoff, A. H. & Gossett, J. M.: The determination of Henry’s law constant for volatile organics by equilibrium partitioning in closed systems, in: Gas transfer at water surfaces, edited by Brutsaert, W. & Jirka, G. H., pp. 17–25, D. Reidel Publishing Company, Dordrecht-Holland, doi:10.1007/978-94-017-1660-4_2 (1984).
  • Lutsyk, A., Portnanskij, V., Sujkov, S., & Tchuprina, V.: A new set of gas/water partition coefficients for the chloromethanes, Monatsh. Chem. – Chem. Mon., 136, 1183–1189, doi:10.1007/S00706-005-0319-6 (2005).
  • Mackay, D. & Shiu, W. Y.: A critical review of Henry’s law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10, 1175–1199, doi:10.1063/1.555654 (1981).
  • Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Volatile Organic Chemicals, Lewis Publishers, Boca Raton, ISBN 0873719735 (1993).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. II of Halogenated Hydrocarbons, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006b).
  • McLachlan, M., Mackay, D., & Jones, P. H.: A conceptual model of organic chemical volatilization at waterfalls, Environ. Sci. Technol., 24, 252–257, doi:10.1021/ES00072A015 (1990).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Moore, R. M.: The solubility of a suite of low molecular weight organochlorine compounds in seawater and implications for estimating the marine source of methyl chloride to the atmosphere, Chemosphere Global Change Sci., 2, 95–99, doi:10.1016/S1465-9972(99)00045-8 (2000).
  • Moore, R. M., Geen, C. E., & Tait, V. K.: Determination of Henry’s law constants for a suite of naturally occuring halogenated methanes in seawater, Chemosphere, 30, 1183–1191, doi:10.1016/0045-6535(95)00009-W (1995).
  • Munz, C. & Roberts, P. V.: Effects of solute concentration and cosolvents on the aqueous activity coefficient of halogenated hydrocarbons, Environ. Sci. Technol., 20, 830–836, doi:10.1021/ES00150A013 (1986).
  • Munz, C. & Roberts, P. V.: Air–water phase equilibria of volatile organic solutes, J. Am. Water Works Assoc., 79, 62–69, doi:10.1002/J.1551-8833.1987.TB02844.X (1987).
  • Nicholson, B. C., Maguire, B. P., & Bursill, D. B.: Henry’s law constants for the trihalomethanes: Effects of water composition and temperature, Environ. Sci. Technol., 18, 518–521, doi:10.1021/ES00125A006 (1984).
  • Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
  • Park, S.-J., Han, S.-D., & Ryu, S.-A.: Measurement of air/water partition coefficient (Henry’s law constant) by using EPICS method and their relationship with vapor pressure and water solubility, J. Korean Inst. Chem. Eng., 35, 915–920 (1997).
  • Pearson, C. R. & McConnell, G.: Chlorinated C1 and C2 hydrocarbons in the marine environment, Proc. R. Soc. Lond. B, 189, 305–332, doi:10.1098/RSPB.1975.0059 (1975).
  • Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
  • Rex, A.: Über die Löslichkeit der Halogenderivate der Kohlenwasserstoffe in Wasser, Z. Phys. Chem., 55, 355–370, doi:10.1515/ZPCH-1906-5519 (1906).
  • Ruiz-Bevia, F. & Fernandez-Torres, M. J.: Determining the Henry’s law constants of THMs in seawater by means of purge-and-trap gas chromatography (PT-GC): The influence of seawater as sample matrix, Anal. Sci., 26, 723–726, doi:10.2116/ANALSCI.26.723 (2010).
  • Ryan, J. A., Bell, R. M., Davidson, J. M., & O’Connor, G. A.: Plant uptake of non-ionic organic chemicals from soils, Chemosphere, 17, 2299–2323, doi:10.1016/0045-6535(88)90142-7 (1988).
  • Ryu, S.-A. & Park, S.-J.: A rapid determination method of the air/water partition coefficient and its application, Fluid Phase Equilib., 161, 295–304, doi:10.1016/S0378-3812(99)00193-4 (1999).
  • Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, URL https://jpldataeval.jpl.nasa.gov (2006).
  • Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2011).
  • Sato, A. & Nakajima, T.: A structure-activity relationship of some chlorinated hydrocarbons, Arch. Environ. Health, 34, 69–75, doi:10.1080/00039896.1979.10667371 (1979b).
  • Schwardt, A., Dahmke, A., & Köber, R.: Henry’s law constants of volatile organic compounds between 0 and 95C – Data compilation and complementation in context of urban temperature increases of the subsurface, Chemosphere, 272, 129 858, doi:10.1016/J.CHEMOSPHERE.2021.129858 (2021).
  • Shen, T. T.: Estimation of organic compound emissions from waste lagoons, J. Air Pollut. Control Assoc., 32, 79–82, doi:10.1080/00022470.1982.10465374 (1982).
  • Smith, J. H. & Bomberger, D. C.: Prediction of volatilization rate of chemicals in water, in: Hydrocarbons and Halogenated Hydrocarbons in the Aquatic Environment, edited by Afghan, B. K., Mackay, D., Braun, H. E., Chau, A. S. Y., Lawrence, J., Lean, D. R. S., Meresz, O., Miles, J. R. W., Pierce, R. C., Rees, G. A. V., White, R. E., Whittle, D. M., & Williams, D. T., pp. 445–451, Plenum Press New York (1980).
  • Staudinger, J. & Roberts, P. V.: A critical review of Henry’s law constants for environmental applications, Crit. Rev. Environ. Sci. Technol., 26, 205–297, doi:10.1080/10643389609388492 (1996).
  • Staudinger, J. & Roberts, P. V.: A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561–576, doi:10.1016/S0045-6535(00)00505-1 (2001).
  • Steward, A., Allott, P. R., Cowles, A. L., & Mapleson, W. W.: Solubility coefficients for inhaled anaesthetics for water, oil and biological media, Br. J. Anaesth., 45, 282–293, doi:10.1093/BJA/45.3.282 (1973).
  • Tancrède, M. V. & Yanagisawa, Y.: An analytical method to determine Henry’s law constant for selected volatile organic compounds at concentrations and temperatures corresponding to tap water use, J. Air Waste Manage. Assoc., 40, 1658–1663, doi:10.1080/10473289.1990.10466813 (1990).
  • Turner, L. H., Chiew, Y. C., Ahlert, R. C., & Kosson, D. S.: Measuring vapor-liquid equilibrium for aqueous-organic systems: Review and a new technique, AIChE J., 42, 1772–1788, doi:10.1002/AIC.690420629 (1996).
  • Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
  • Warneck, P.: A review of Henry’s law coefficients for chlorine-containing C1 and C2 hydrocarbons, Chemosphere, 69, 347–361, doi:10.1016/J.CHEMOSPHERE.2007.04.088 (2007).
  • Warner, H. P., Cohen, J. M., & Ireland, J. C.: Determination of Henry’s law constants of selected priority pollutants, Tech. rep., U.S. EPA, Municipal Environmental Research Laboratory, Wastewater Research Division, Cincinnati, Ohio, 45268, USA (1980).
  • Welke, B., Ettlinger, K., & Riederer, M.: Sorption of volatile organic chemicals in plant surfaces, Environ. Sci. Technol., 32, 1099–1104, doi:10.1021/ES970763V (1998).
  • Winkler, L. W.: Gesetzmässigkeit bei der Absorption der Gase in Flüssigkeiten, Z. Phys. Chem., 55, 344–354, doi:10.1515/ZPCH-1906-5518 (1906).
  • Wright, D. A., Sandler, S. I., & DeVoll, D.: Infinite dilution activity coefficients and solubilities of halogenated hydrocarbons in water at ambient temperatures, Environ. Sci. Technol., 26, 1828–1831, doi:10.1021/ES00033A018 (1992).
  • Yao, X., aand X. Zhang, M. L., Hu, Z., & Fan, B.: Radial basis function network-based quantitative structure-property relationship for the prediction of Henry’s law constant, Anal. Chim. Acta, 462, 101–117, doi:10.1016/S0003-2670(02)00273-8 (2002).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
  • Zhang, S. B. L., Wang, S., & Franzblau, A.: Partition coefficients for the trihalomethanes among blood, urine, water, milk and air, Sci. Total Environ., 284, 237–247, doi:10.1016/S0048-9697(01)00890-7 (2002).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
12) Value at T = 293 K.
14) Value at T = 310 K.
20) Calculated using machine learning matrix completion methods (MCMs).
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
24) Value at "room temperature".
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
71) Solubility in sea water.
73) Value at T = 296 K.
81) Value at T = 288 K.
88) Value at T = 295 K.
154) Value at T = 275 K.
230) Yao et al. (2002) compared two QSPR methods and found that radial basis function networks (RBFNs) are better than multiple linear regression. In their paper, they provide neither a definition nor the unit of their Henry's law constants. Comparing the values with those that they cite from Yaws (1999), it is assumed that they use the variant Hvpx and the unit atm.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
239) Calculated using linear free energy relationships (LFERs).
240) Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC).
241) Calculated using COSMOtherm.
243) Value from the training dataset.
244) Calculated using the GROMHE model.
245) Calculated using the SPARC approach.
246) Calculated using the HENRYWIN method.
275) Value from the test dataset.
279) Data are taken from the report by Howe et al. (1987).
299) Value given here as quoted by Staudinger and Roberts (1996).
347) The temperature dependence is recalculated using the data in Table 4 of Lamarche and Droste (1989) and not taken from their Table 5.
375) Value at T = 283 K.
651) The same data were also published in McConnell et al. (1975).
653) Values at different temperatures are from different sources. Thus a temperature dependence was not calculated.
656) Values at 298 K in Tables C2 and C5 of Brockbank (2013) are inconsistent, with 7 % difference.
657) The data from Görgényi et al. (2002) were fitted to the three-parameter equation: Hscp= exp( −378.59438 +20174.67146/T +53.50889 ln(T)) mol m−3 Pa−1, with T in K.
658) The data from Moore et al. (1995) were fitted to the three-parameter equation: Hscp= exp( 32.52949 +1878.33965/T −7.88669 ln(T)) mol m−3 Pa−1, with T in K.
659) The data from Wright et al. (1992) were fitted to the three-parameter equation: Hscp= exp( −109.09283 +8000.75665/T +13.39152 ln(T)) mol m−3 Pa−1, with T in K.
660) Probably an interpolation of the data from Balls (1980).

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *