MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with sulfur (S)Sulfur (C, H, O, N, Cl, S) → dimethylsulfoxide

FORMULA:CH3SOCH3
TRIVIAL NAME: DMSO
CAS RN:67-68-5
STRUCTURE
(FROM NIST):
InChIKey:IAZDPXIOMUYVGZ-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
9.8×102 Burkholder et al. (2019) L
9.8×102 Burkholder et al. (2015) L
8.0×103 7800 Brockbank (2013) L
9.8×102 Sander et al. (2011) L
9.8×102 Sander et al. (2006) L
> 9.9×103 Lee and Zhou (1994) M
9.4×102 1300 Watts and Brimblecombe (1987) M
4.4 Mackay et al. (2006d) V
4.4 Mackay et al. (1995) V
1.0×104 8700 Bagno et al. (1991) T 475)
1.4×101 Betterton (1992) C
2.0×102 Keshavarz et al. (2022) Q
1.3×102 Duchowicz et al. (2020) Q
4.6×102 Wang et al. (2017) Q 81) 239)
3.9×104 Wang et al. (2017) Q 81) 240)
2.0×105 Wang et al. (2017) Q 81) 241)
4.3×103 Hilal et al. (2008) Q
3100 Kühne et al. (2005) Q
6.7×103 Taft et al. (1985) Q
6.5×103 Duchowicz et al. (2020) ? 21) 186)
4100 Kühne et al. (2005) ?
Fogg and Sangster (2003) ? 816)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Bagno, A., Lucchini, V., & Scorrano, G.: Thermodynamics of protonation of ketones and esters and energies of hydration of their conjugate acids, J. Phys. Chem., 95, 345–352, doi:10.1021/J100154A063 (1991).
  • Betterton, E. A.: Henry’s law constants of soluble and moderately soluble organic gases: Effects on aqueous phase chemistry, Adv. Environ. Sci. Technol., 24, 1–50 (1992).
  • Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Fogg, P. & Sangster, J.: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, John Wiley & Sons, Inc., ISBN 978-0-471-98651-5 (2003).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Lee, Y.-N. & Zhou, X.: Aqueous reaction kinetics of ozone and dimethylsulfide and its atmospheric implications, J. Geophys. Res., 99, 3597–3605, doi:10.1029/93JD02919 (1994).
  • Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. IV of Oxygen, Nitrogen, and Sulfur Containing Compounds, Lewis Publishers, Boca Raton, ISBN 1566700353 (1995).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. IV of Nitrogen and Sulfur Containing Compounds and Pesticides, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006d).
  • Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, URL https://jpldataeval.jpl.nasa.gov (2006).
  • Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2011).
  • Taft, R. W., Abraham, M. H., Doherty, R. M., & Kamlet, M. J.: The molecular properties governing solubilities of organic nonelectrolytes in water, Nature, 313, 384–386, doi:10.1038/313384A0 (1985).
  • Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
  • Watts, S. F. & Brimblecombe, P.: The Henry’s law constant of dimethyl sulphoxide, Environ. Technol. Lett., 8, 483–486, doi:10.1080/09593338709384509 (1987).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

21) Several references are given in the list of Henry's law constants but not assigned to specific species.
81) Value at T = 288 K.
186) Experimental value, extracted from HENRYWIN.
239) Calculated using linear free energy relationships (LFERs).
240) Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC).
241) Calculated using COSMOtherm.
475) Calculated under the assumption that ∆G and ∆H are based on [mol L−1] and [atm] as the standard states.
816) It is unclear how Fogg and Sangster (2003) obtained the data. Apparently, limiting activity coefficients γ were taken from Trampe and Eckert (1993), but a source for vapor pressure data is not mentioned. Also, the γ values listed in the table are different from those found in the original paper.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *