MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with oxygen (O)Alcohols (ROH) → 1-pentanol

FORMULA:C5H11OH
TRIVIAL NAME: amyl alcohol
CAS RN:71-41-0
STRUCTURE
(FROM NIST):
InChIKey:AMQJEAYHLZJPGS-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
8.6×10−1 7400 Brockbank (2013) L 1)
1.0 7900 Dohnal et al. (2006) L 1)
8.9×10−1 7800 Plyasunov and Shock (2000) L
8.1×10−1 7100 Shunthirasingham et al. (2013) M
7.5×10−1 6100 Lei et al. (2007) M 397)
9.4×10−1 6800 Falabella et al. (2006) M 11) 340)
9.5×10−1 6900 Gupta et al. (2000) M
7.7×10−1 Merk and Riederer (1997) M
4.2×10−1 Kaneko et al. (1994) M 14)
8.4×10−1 Li and Carr (1993) M
9.0×10−1 Rytting et al. (1978) M
7.8×10−1 Butler et al. (1935) M
8.3×10−1 Mackay et al. (2006c) V
8.3×10−1 Mackay et al. (1995) V
6.1×10−1 4900 Djerki and Laub (1988) V
7800 Abraham (1984) V
7.8×10−1 Amoore and Buttery (1978) V
7.6×10−1 Butler et al. (1935) V
7.6×10−1 Yaws (2003) X 259)
7.3×10−1 Dupeux et al. (2022) Q 260)
1.6 Keshavarz et al. (2022) Q
1.4 Duchowicz et al. (2020) Q
1.8×10−1 Wang et al. (2017) Q 81) 239)
6.6×10−1 Wang et al. (2017) Q 81) 240)
9.1×10−1 Wang et al. (2017) Q 81) 241)
6.2×10−1 Raventos-Duran et al. (2010) Q 243) 244)
3.9×10−1 Raventos-Duran et al. (2010) Q 245)
7.8×10−1 Raventos-Duran et al. (2010) Q 246)
4.5×10−1 Hilal et al. (2008) Q
7.6×10−1 Modarresi et al. (2007) Q 68)
7600 Kühne et al. (2005) Q
7.9×10−1 Yaffe et al. (2003) Q 249) 250)
5.3×10−1 Yao et al. (2002) Q 230)
7.7×10−1 English and Carroll (2001) Q 231) 232)
1.3 Katritzky et al. (1998) Q
7.7×10−1 Yaws et al. (1997) Q
6.2×10−1 Russell et al. (1992) Q 360)
6.5×10−1 Suzuki et al. (1992) Q 233)
7.9×10−1 Nirmalakhandan and Speece (1988) Q
7.6×10−1 Duchowicz et al. (2020) ? 21) 186)
7700 Kühne et al. (2005) ?
7.7×10−1 Yaws (1999) ? 21)
8.1×10−1 Yaws and Yang (1992) ? 21)
9.0×10−1 Abraham et al. (1990) ?
9.6×10−1 Mackay and Yeun (1983) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H.: Thermodynamics of solution of homologous series of solutes in water, J. Chem. Soc. Faraday Trans. 1, 80, 153–181, doi:10.1039/F19848000153 (1984).
  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Amoore, J. E. & Buttery, R. G.: Partition coefficient and comparative olfactometry, Chem. Senses Flavour, 3, 57–71, doi:10.1093/CHEMSE/3.1.57 (1978).
  • Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
  • Butler, J. A. V., Ramchandani, C. N., & Thomson, D. W.: The solubility of non-electrolytes. Part I. The free energy of hydration of some aliphatic alcohols, J. Chem. Soc., pp. 280–285, doi:10.1039/JR9350000280 (1935).
  • Djerki, R. A. & Laub, R. J.: Solute retention in column liquid chromatography. X. Determination of solute infinite-dilution activity coefficients in methanol, water, and their mixtures, by combined gas-liquid and liquid-liquid chromatography, J. Liq. Chromatogr., 11, 585–612, doi:10.1080/01483918808068333 (1988).
  • Dohnal, V., Fenclová, D., & Vrbka, P.: Temperature dependences of limiting activity coefficients, Henry’s law constants, and derivative infinite dilution properties of lower (C1-C5) 1-alkanols in water. critical compilation, correlation, and recommended data, J. Phys. Chem. Ref. Data, 35, 1621–1651, doi:10.1063/1.2203355 (2006).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Dupeux, T., Gaudin, T., Marteau-Roussy, C., Aubry, J.-M., & Nardello-Rataj, V.: COSMO-RS as an effective tool for predicting the physicochemical properties of fragrance raw materials, Flavour Fragrance J., 37, 106–120, doi:10.1002/FFJ.3690 (2022).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Falabella, J. B., Nair, A., & Teja, A. S.: Henry’s constants of 1-alkanols and 2-ketones in salt solutions, J. Chem. Eng. Data, 51, 1940–1945, doi:10.1021/JE0600956 (2006).
  • Gupta, A. K., Teja, A. S., Chai, X. S., & Zhu, J. Y.: Henry’s constants of n-alkanols (methanol through n-hexanol) in water at temperatures between 40C and 90C, Fluid Phase Equilib., 170, 183–192, doi:10.1016/S0378-3812(00)00350-2 (2000).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Kaneko, T., Wang, P. Y., & Sato, A.: Partition coefficients of some acetate esters and alcohols in water, blood, olive oil, and rat tissues, Occup. Environ. Med., 51, 68–72, doi:10.1136/OEM.51.1.68 (1994).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Lei, Y. D., Shunthirasingham, C., & Wania, F.: Comparison of headspace and gas-stripping techniques for measuring the air–water partititioning of normal alkanols (C4 to C10) – effect of temperature, chain length and adsorption to the water surface, J. Chem. Eng. Data, 52, 168–179, doi:10.1021/JE060344Q (2007).
  • Li, J. & Carr, P. W.: Measurement of water-hexadecane partition coefficients by headspace gas chromatography and calculation of limiting activity coefficients in water, Anal. Chem., 65, 1443–1450, doi:10.1021/AC00058A023 (1993).
  • Mackay, D. & Yeun, A. T. K.: Mass transfer coefficient correlations for volatilization of organic solutes from water, Environ. Sci. Technol., 17, 211–217, doi:10.1021/ES00110A006 (1983).
  • Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. IV of Oxygen, Nitrogen, and Sulfur Containing Compounds, Lewis Publishers, Boca Raton, ISBN 1566700353 (1995).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Oxygen Containing Compounds, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006c).
  • Merk, S. & Riederer, M.: Sorption of volatile C1 to C6 alkanols in plant cuticles, J. Exp. Bot., 48, 1095–1104, doi:10.1093/JXB/48.5.1095 (1997).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
  • Plyasunov, A. V. & Shock, E. L.: Thermodynamic functions of hydration of hydrocarbons at 298.15K and 0.1MPa, Geochim. Cosmochim. Acta, 64, 439–468, doi:10.1016/S0016-7037(99)00330-0 (2000).
  • Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
  • Russell, C. J., Dixon, S. L., & Jurs, P. C.: Computer-assisted study of the relationship between molecular structure and Henry’s law constant, Anal. Chem., 64, 1350–1355, doi:10.1021/AC00037A009 (1992).
  • Rytting, J. H., Huston, L. P., & Higuchi, T.: Thermodynamic group contributions for hydroxyl, amino, and methylene groups, J. Pharm. Sci., 69, 615–618, doi:10.1002/JPS.2600670510 (1978).
  • Shunthirasingham, C., Cao, X., Lei, Y. D., & Wania, F.: Large bubbles reduce the surface sorption artifact during inert gas stripping, J. Chem. Eng. Data, 58, 792–797, doi:10.1021/JE301326T (2013).
  • Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
  • Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
  • Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
  • Yao, X., aand X. Zhang, M. L., Hu, Z., & Fan, B.: Radial basis function network-based quantitative structure-property relationship for the prediction of Henry’s law constant, Anal. Chim. Acta, 462, 101–117, doi:10.1016/S0003-2670(02)00273-8 (2002).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
  • Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
  • Yaws, C. L., Hopper, J. R., Sheth, S. D., Han, M., & Pike, R. W.: Solubility and Henry’s law constant for alcohols in water, Waste Manage., 17, 541–547, doi:10.1016/S0956-053X(97)10057-5 (1997).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
11) Measured at high temperature and extrapolated to T = 298.15 K.
14) Value at T = 310 K.
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
81) Value at T = 288 K.
186) Experimental value, extracted from HENRYWIN.
230) Yao et al. (2002) compared two QSPR methods and found that radial basis function networks (RBFNs) are better than multiple linear regression. In their paper, they provide neither a definition nor the unit of their Henry's law constants. Comparing the values with those that they cite from Yaws (1999), it is assumed that they use the variant Hvpx and the unit atm.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
232) Value from the training dataset.
233) Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details.
239) Calculated using linear free energy relationships (LFERs).
240) Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC).
241) Calculated using COSMOtherm.
243) Value from the training dataset.
244) Calculated using the GROMHE model.
245) Calculated using the SPARC approach.
246) Calculated using the HENRYWIN method.
249) Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here.
250) Value from the training set.
259) Value given here as quoted by Dupeux et al. (2022).
260) Calculated using the COSMO-RS method.
340) Values for salt solutions are also available from this reference.
360) Value from the external prediction set.
397) Extrapolated from data above 298 K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *