MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsInorganic speciesRare gases (He, Ne, Ar, Kr, Xe, Rn) → helium

FORMULA:He
CAS RN:7440-59-7
STRUCTURE
(FROM NIST):
InChIKey:SWQJXJOGLNCZEY-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
3.9×10−6 15 Fernández-Prini et al. (2003) L 3)
3.8×10−6 83 Abraham and Matteoli (1988) L
3.8×10−6 83 Clever (1979a) L 1)
3.8×10−6 92 Wilhelm et al. (1977) L
3.7×10−6 320 Himmelblau (1960) L 1)
3.9×10−6 69 Krause and Benson (1989) M
Shoor et al. (1969) M 188)
3.7×10−6 120 Morrison and Johnstone (1954) M 189)
3.8×10−6 Friedman (1954) M
3.8×10−6 210 Lannung (1930) M 190)
3.7×10−6 380 Cady et al. (1922) M
6.3×10−6 -700 von Antropoff (1910) M 42)
3.7×10−6 220 Wauchope and Haque (1972) V
5.3×10−6 Pierotti (1965) T
4.5×10−6 Hayer et al. (2022) Q 20)
3.3×10−6 4 Linnemann et al. (2020) Q 42)
3.3×10−6 71 Linnemann et al. (2020) Q 42) 191)
3.9×10−6 Warr et al. (2015) Q 12)
3.8×10−6 83 Yaws et al. (1999) ? 21)
3.9×10−6 Abraham and Weathersby (1994) ? 21)
3.7×10−6 200 Dean and Lange (1999) ? 23) 192)
3.8×10−6 Abraham et al. (1990) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H. & Matteoli, E.: The temperature variation of the hydrophobic effect, J. Chem. Soc. Faraday Trans. 1, 84, 1985–2000, doi:10.1039/F19888401985 (1988).
  • Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Cady, H. P., Elsey, H. M., & Berger, E. V.: The solubility of helium in water, J. Am. Chem. Soc., 44, 1456–1461, doi:10.1021/JA01428A009 (1922).
  • Clever, H. L.: IUPAC Solubility Data Series, Volume 1, Helium and Neon, Pergamon Press, Oxford, ISBN 0080223516 (1979a).
  • Dean, J. A. & Lange, N. A.: Lange’s Handbook of Chemistry, Fifteenth Edition, McGraw-Hill, Inc., ISBN 9780070163843 (1999).
  • Fernández-Prini, R., Alvarez, J. L., & Harvey, A. H.: Henry’s constants and vapor-liquid distribution constants for gaseous solutes in H2O and D2O at high temperatures, J. Phys. Chem. Ref. Data, 32, 903–916, doi:10.1063/1.1564818 (2003).
  • Friedman, H. L.: The solubilities of sulfur hexafluoride in water and of the rare gases, sulfur hexafluoride and osmium tetroxide in nitromethane, J. Am. Chem. Soc., 76, 3294–3297, doi:10.1021/JA01641A065 (1954).
  • Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
  • Himmelblau, D. M.: Solubilities of inert gases in water. 0C. to near the critical point of water, J. Chem. Eng. Data, 5, 10–15, doi:10.1021/JE60005A003 (1960).
  • Krause, Jr., D. & Benson, B. B.: The solubility and isotopic fractionation of gases in dilute aqueous solution. IIa. solubilities of the noble gases, J. Solution Chem., 18, 823–873, doi:10.1007/BF00685062 (1989).
  • Lannung, A.: The solubilities of helium, neon and argon in water and some organic solvents, J. Am. Chem. Soc., 52, 68–80, doi:10.1021/JA01364A011 (1930).
  • Linnemann, M., Nikolaychuk, P. A., noz Muñoz, Y. M. M., Baumhögger, E., & Vrabec, J.: Henry’s law constant of noble gases in water, methanol, ethanol, and isopropanol by experiment and molecular simulation, J. Chem. Eng. Data, 65, 1180–1188, doi:10.1021/ACS.JCED.9B00565 (2020).
  • Morrison, T. J. & Johnstone, N. B.: Solubilities of the inert gases in water, J. Chem. Soc., pp. 3441–3446, doi:10.1039/JR9540003441 (1954).
  • Pierotti, R. A.: Aqueous solutions of nonpolar gases, J. Phys. Chem., 69, 281–288, doi:10.1021/J100885A043 (1965).
  • Shoor, S. K., Walker, Jr., R. D., & Gubbins, K. E.: Salting out of nonpolar gases in aqueous potassium hydroxide solutions, J. Phys. Chem., 73, 312–317, doi:10.1021/J100722A006 (1969).
  • von Antropoff, A.: The solubility of xenon, krypton, argon, neon, and helium in water, Proc. R. Soc. Lond. A, 83, 474–482, doi:10.1098/RSPA.1910.0036 (1910).
  • Warr, O., Ballentine, C. J., Mu, J., & Masters, A.: Optimizing noble gas-water interactions via Monte Carlo simulations, J. Phys. Chem. B, 119, 14 486–14 495, doi:10.1021/ACS.JPCB.5B06389 (2015).
  • Wauchope, R. D. & Haque, R.: Aqueous solutions of nonpolar compounds. Heat-capacity effects, Can. J. Chem., 50, 133–138, doi:10.1139/V72-022 (1972).
  • Wilhelm, E., Battino, R., & Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, doi:10.1021/CR60306A003 (1977).
  • Yaws, C. L., Hopper, J. R., Wang, X., Rathinsamy, A. K., & Pike, R. W.: Calculating solubility & Henry’s law constants for gases in water, Chem. Eng., pp. 102–105 (1999).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
3) The vapor pressure for water from Wagner and Pruss (1993) was used to calculate Hs.
12) Value at T = 293 K.
20) Calculated using machine learning matrix completion methods (MCMs).
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
23) The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by Buck (1981). The quantities A and α from Dean and Lange (1999) were assumed to be identical.
42) Fitting the temperature dependence dlnH/d(1/T) produced a very low correlation coefficient (r2 < 0.5). The data should be treated with caution.
188) The data presented for helium in Table II of Shoor et al. (1969) appear to be incorrect and are not reproduced here.
189) The data from Morrison and Johnstone (1954) were fitted to the three-parameter equation: Hscp= exp( −267.15298 +11440.04263/T +37.95994 ln(T)) mol m−3 Pa−1, with T in K.
190) The data from Lannung (1930) were fitted to the three-parameter equation: Hscp= exp( 84.35043 −4135.59197/T −14.55881 ln(T)) mol m−3 Pa−1, with T in K.
191) Calculated employing molecular force field models for the solutes from Warr et al. (2015).
192) The data from Dean and Lange (1999) were fitted to the three-parameter equation: Hscp= exp( −153.15219 +6434.36008/T +20.89911 ln(T)) mol m−3 Pa−1, with T in K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *