MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with fluorine (F)Organic fluorine → 1,1-difluoroethane

FORMULA:C2H4F2
TRIVIAL NAME: R152a
CAS RN:75-37-6
STRUCTURE
(FROM NIST):
InChIKey:NPNPZTNLOVBDOC-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
4.9×10−4 2600 Burkholder et al. (2019) L 71) 610)
4.9×10−4 2600 Burkholder et al. (2015) L 71) 611)
4.9×10−4 2800 Zheng et al. (1997) M 612)
5.0×10−4 2800 Maaßen (1995) M 613)
4.9×10−4 2700 Reichl (1995) M 614)
4.2×10−4 2300 McLinden (1989) V
4.8×10−4 Hine and Mookerjee (1975) V
4.8×10−4 Irmann (1965) C 295)
5.7×10−4 Hayer et al. (2022) Q 20)
1.2×10−2 Keshavarz et al. (2022) Q
1.2×10−3 Duchowicz et al. (2020) Q
1.6×10−4 Gharagheizi et al. (2012) Q
4.9×10−4 Raventos-Duran et al. (2010) Q 244) 272)
1.6×10−4 Raventos-Duran et al. (2010) Q 245)
2.5×10−5 Raventos-Duran et al. (2010) Q 246)
2.9×10−4 Hilal et al. (2008) Q
1.4×10−4 Modarresi et al. (2007) Q 68)
2600 Kühne et al. (2005) Q
9.0×10−4 English and Carroll (2001) Q 231) 232)
1.4×10−4 Nirmalakhandan and Speece (1988) Q
4.3×10−4 Irmann (1965) Q
4.9×10−4 Duchowicz et al. (2020) ? 21) 186)
2800 Kühne et al. (2005) ?
3.9×10−4 Yaws (1999) ? 21) 298)
3.7×10−4 Yaws and Yang (1992) ? 21) 298)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
  • Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
  • Irmann, F.: Eine einfache Korrelation zwischen Wasserlöslichkeit und Struktur von Kohlenwasserstoffen und Halogenkohlenwasserstoffen, Chem.-Ing.-Tech., 37, 789–798, doi:10.1002/CITE.330370802 (1965).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Maaßen, S.: Experimentelle Bestimmung und Korrelierung von Verteilungskoeffizienten in verdünnten Lösungen, Ph.D. thesis, Technische Universität Berlin, Germany, ISBN 3826511042 (1995).
  • McLinden, M. O.: Physical properties of alternatives to the fully halogenated chlorofluorocarbons, in: WMO Report 20, Scientific Assessment of Stratospheric Ozone: 1989, Volume II, pp. 11–38, World Meteorol. Organ., Geneva, ISBN 9280712551 (1989).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
  • Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
  • Reichl, A.: Messung und Korrelierung von Gaslöslichkeiten halogenierter Kohlenwasserstoffe, Ph.D. thesis, Technische Universität Berlin, Germany (1995).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
  • Zheng, D.-Q., Guo, T.-M., & Knapp, H.: Experimental and modeling studies on the solubility of CO2, CHClF2, CHF3, C2H2F4 and C2H4F2 in water and aqueous NaCl solutions under low pressures, Fluid Phase Equilib., 129, 197–209, doi:10.1016/S0378-3812(96)03177-9 (1997).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

20) Calculated using machine learning matrix completion methods (MCMs).
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
71) Solubility in sea water.
186) Experimental value, extracted from HENRYWIN.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
232) Value from the training dataset.
244) Calculated using the GROMHE model.
245) Calculated using the SPARC approach.
246) Calculated using the HENRYWIN method.
272) Value from the validation dataset.
295) Value at T = 294 K.
298) Value at T = 301 K.
610) The H298 and A, B data listed in Table 5-7 of Burkholder et al. (2019) are inconsistent, with 8 % difference.
611) The H298 and A, B data listed in Table 5-7 of Burkholder et al. (2015) are inconsistent, with 8 % difference.
612) The data from Zheng et al. (1997) were fitted to the three-parameter equation: Hscp= exp( −203.78636 +11097.46295/T +27.89781 ln(T)) mol m−3 Pa−1, with T in K.
613) The data from Maaßen (1995) were fitted to the three-parameter equation: Hscp= exp( −184.82864 +10260.68840/T +25.06659 ln(T)) mol m−3 Pa−1, with T in K.
614) The data from Reichl (1995) were fitted to the three-parameter equation: Hscp= exp( −175.64793 +9805.36391/T +23.71997 ln(T)) mol m−3 Pa−1, with T in K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *