MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with oxygen (O)Alcohols (ROH) → 3,7-dimethyl-1,6-octadien-3-ol

FORMULA:C10H18O
TRIVIAL NAME: linalool
CAS RN:78-70-6
STRUCTURE
(FROM NIST):
InChIKey:CDOSHBSSFJOMGT-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
2.0×10−1 4400 Leng et al. (2013) M
3.8×10−1 Copolovici and Niinemets (2007) M
4.6×10−1 Altschuh et al. (1999) M
4.0×10−1 Martins et al. (2017) V 316)
4.8×10−1 Copolovici and Niinemets (2005) V
4.8×10−1 Niinemets and Reichstein (2002) V
2.1×10−1 14000 Li et al. (1998) V
1.6 Dupeux et al. (2022) Q 260)
1.3×10−1 Keshavarz et al. (2022) Q
3.3×10−1 Duchowicz et al. (2020) Q 185)
2.5×10−1 Savary et al. (2014) Q
2.5 Raventos-Duran et al. (2010) Q 244) 272)
6.2×10−1 Raventos-Duran et al. (2010) Q 245)
2.5×10−1 Raventos-Duran et al. (2010) Q 246)
6.9×10−1 Hilal et al. (2008) Q
1.4 Modarresi et al. (2007) Q 68)
1.5×10−2 Hertel and Sommer (2006) Q 417)
4.6×10−1 Duchowicz et al. (2020) ? 21) 186)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Altschuh, J., Brüggemann, R., Santl, H., Eichinger, G., & Piringer, O. G.: Henry’s law constants for a diverse set of organic chemicals: Experimental determination and comparison of estimation methods, Chemosphere, 39, 1871–1887, doi:10.1016/S0045-6535(99)00082-X (1999).
  • Copolovici, L. O. & Niinemets, U.: Temperature dependencies of Henry’s law constants and octanol/water partition coefficients for key plant volatile monoterpenoids, Chemosphere, 61, 1390–1400, doi:10.1016/J.CHEMOSPHERE.2005.05.003 (2005).
  • Copolovici, L. & Niinemets, U.: Salting-in and salting-out effects of ionic and neutral osmotica on limonene and linalool Henry’s law constants and octanol/water partition coefficients, Chemosphere, 69, 621–629, doi:10.1016/J.CHEMOSPHERE.2007.02.066 (2007).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Dupeux, T., Gaudin, T., Marteau-Roussy, C., Aubry, J.-M., & Nardello-Rataj, V.: COSMO-RS as an effective tool for predicting the physicochemical properties of fragrance raw materials, Flavour Fragrance J., 37, 106–120, doi:10.1002/FFJ.3690 (2022).
  • Hertel, M. O. & Sommer, K.: Limiting separation factors and limiting activity coefficients for 2-furfural, γ-nonalactone, benzaldehyde, and linalool in water at 100C, J. Chem. Eng. Data, 51, 1283–1285, doi:10.1021/JE0600404 (2006).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Leng, C., Kish, J. D., Kelley, J., Mach, M., Hiltner, J., Zhang, Y., & Liu, Y.: Temperature-dependent Henry’s law constants of atmospheric organics of biogenic origin, J. Phys. Chem. A, 117, 10 359–10 367, doi:10.1021/JP403603Z (2013).
  • Li, J., Perdue, E. M., Pavlostathis, S. G., & Araujo, R.: Physicochemical properties of selected monoterpenes, Environ. Int., 24, 353–358, doi:10.1016/S0160-4120(98)00013-0 (1998).
  • Martins, M. A. R., Silva, L. P., Ferreira, O., Schröder, B., Coutinho, J. A. P., & Pinho, S. P.: Terpenes solubility in water and their environmental distribution, J. Mol. Liq., 241, 996–1002, doi:10.1016/J.MOLLIQ.2017.06.099 (2017).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Niinemets, U. & Reichstein, M.: A model analysis of the effects of nonspecific monoterpenoid storage in leaf tissues on emission kinetics and composition in Mediterranean sclerophyllous Quercus species, Global Biogeochem. Cycles, 16, 1110, doi:10.1029/2002GB001927 (2002).
  • Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
  • Savary, G., Hucher, N., Petibon, O., & Grisel, M.: Study of interactions between aroma compounds and acacia gum using headspace measurements, Food Hydrocolloids, 37, 1–6, doi:10.1016/J.FOODHYD.2013.10.026 (2014).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

21) Several references are given in the list of Henry's law constants but not assigned to specific species.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
185) Value from the validation set for checking whether the model is satisfactory for compounds that are absent from the training set.
186) Experimental value, extracted from HENRYWIN.
244) Calculated using the GROMHE model.
245) Calculated using the SPARC approach.
246) Calculated using the HENRYWIN method.
260) Calculated using the COSMO-RS method.
272) Value from the validation dataset.
316) Values for the Henry's law constants shown in Fig. 3 of Martins et al. (2017) were obtained from Simão Pinho (personal communication, 2022).
417) Value at T = 373 K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *