MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsHydrocarbons (C, H)Polynuclear aromatics → phenanthrene

FORMULA:C14H10
CAS RN:85-01-8
STRUCTURE
(FROM NIST):
InChIKey:YNPNZTXNASCQKK-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
2.1×10−1 4500 Schwardt et al. (2021) L 1)
3.4×10−1 7100 Brockbank (2013) L 1)
2.3×10−1 Ma et al. (2010b) L 368)
2.3×10−1 Ma et al. (2010b) L 369)
2.3×10−1 4200 Fogg and Sangster (2003) L
2.5×10−1 Mackay and Shiu (1981) L
1.8×10−1 Lee et al. (2012) M
2.7×10−1 7700 Odabasi et al. (2006) M
2.3×10−1 6000 Bamford et al. (1999a) M
1.6×10−1 7600 Bamford et al. (1999b) M
3.4×10−1 De Maagd et al. (1998) M 12)
2.8×10−1 Shiu and Mackay (1997) M
2.1×10−1 3800 Alaee et al. (1996) M
2.5×10−1 Zhang and Pawliszyn (1993) M
4.2×10−1 Fendinger and Glotfelty (1990) M
2.7×10−1 Mackay and Shiu (1981) M
2.5×10−1 Mackay et al. (1979) M
1.8×10−1 Southworth (1979) M
3.1×10−1 Mackay et al. (2006a) V
3.1×10−1 Shiu and Ma (2000) V
3.8×10−1 De Maagd et al. (1998) V 12)
3.1×10−1 Shiu and Mackay (1997) V
3.2×10−2 Hwang et al. (1992) V
2.8×10−1 Eastcott et al. (1988) V
3.2×10−1 Cabani et al. (1981) V
2.0×10−1 Southworth (1979) V
3.9×10−1 Hine and Mookerjee (1975) V
2.8×10−1 6500 Wauchope and Haque (1972) V
9.3×10−2 4900 Paasivirta et al. (1999) T
9.0×10−2 Yaws (2003) X 259)
9.0×10−2 Yaws (2003) X 238)
9.3×10−2 4700 Goldstein (1982) X 299)
7.6×10−2 McCarty (1980) X 370)
2.5×10−1 Smith et al. (1993) C 295)
2.5×10−1 Ryan et al. (1988) C
2.5×10−1 Dupeux et al. (2022) Q 260)
4.3×10−1 Keshavarz et al. (2022) Q
9.2×10−2 Duchowicz et al. (2020) Q 185)
2.1×10−1 Parnis et al. (2015) Q 371)
7.2×10−2 Gharagheizi et al. (2010) Q 247)
1.7×10−1 Schröder et al. (2010) Q 365)
2.6×10−1 Hilal et al. (2008) Q
6.4×10−1 Modarresi et al. (2007) Q 68)
4800 Kühne et al. (2005) Q
2.5×10−1 Yaffe et al. (2003) Q 249) 250)
9.2×10−1 Suzuki et al. (1992) Q 233)
4.8×10−1 Nirmalakhandan and Speece (1988) Q
2.6×10−1 Arbuckle (1983) Q
2.3×10−1 Duchowicz et al. (2020) ? 21) 186)
5300 Kühne et al. (2005) ?
2.7×10−1 Abraham et al. (1990) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Alaee, M., Whittal, R. M., & Strachan, W. M. J.: The effect of water temperature and composition on Henry’s law constant for various PAH’s, Chemosphere, 32, 1153–1164, doi:10.1016/0045-6535(96)00031-8 (1996).
  • Arbuckle, W. B.: Estimating activity coefficients for use in calculating environmental parameters, Environ. Sci. Technol., 17, 537–542, doi:10.1021/ES00115A008 (1983).
  • Bamford, H. A., Poster, D. L., & Baker, J. E.: Temperature dependence of Henry’s law constants of thirteen polycyclic aromatic hydrocarbons between 4C and 31C, Environ. Toxicol. Chem., 18, 1905–1912, doi:10.1002/ETC.5620180906 (1999a).
  • Bamford, H. A., Poster, D. L., & Baker, J. E.: Method for measuring the temperature dependence of the Henry’s law constant of selected polycyclic aromatic hydrocarbons, Polycyclic Aromat. Compd., 14, 11–22, doi:10.1080/10406639908019107 (1999b).
  • Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
  • Cabani, S., Gianni, P., Mollica, V., & Lepori, L.: Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution, J. Solution Chem., 10, 563–595, doi:10.1007/BF00646936 (1981).
  • De Maagd, P. G.-J., Ten Hulscher, D. T. E. M., van den Heuvel, H., Opperhuizen, A., & Sijm, D. T. H. M.: Physicochemical properties of polycyclic aromatic hydrocarbons: Aqueous solubilities, n-octanol/water partition coefficients, and Henry’s law constants, Environ. Toxicol. Chem., 17, 251–257, doi:10.1002/ETC.5620170216 (1998).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Dupeux, T., Gaudin, T., Marteau-Roussy, C., Aubry, J.-M., & Nardello-Rataj, V.: COSMO-RS as an effective tool for predicting the physicochemical properties of fragrance raw materials, Flavour Fragrance J., 37, 106–120, doi:10.1002/FFJ.3690 (2022).
  • Eastcott, L., Shiu, W. Y., & Mackay, D.: Environmentally relevant physical-chemical properties of hydrocarbons: A review of data and development of simple correlations, Oil Chem. Pollut., 4, 191–216, doi:10.1016/S0269-8579(88)80020-0 (1988).
  • Fendinger, N. J. & Glotfelty, D. E.: Henry’s law constants for selected pesticides, PAHs and PCBs, Environ. Toxicol. Chem., 9, 731–735, doi:10.1002/ETC.5620090606 (1990).
  • Fogg, P. & Sangster, J.: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, John Wiley & Sons, Inc., ISBN 978-0-471-98651-5 (2003).
  • Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
  • Goldstein, D. J.: Air and steam stripping of toxic pollutants, Appendix 3: Henry’s law constants, Tech. Rep. EPA-68-03-002, Industrial Environmental Research Laboratory, Cincinnati, OH, USA (1982).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
  • Hwang, Y.-L., Olson, J. D., & Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, doi:10.1021/IE00007A022 (1992).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Lee, H., Kim, H.-J., & Kwon, J.-H.: Determination of Henry’s law constant using diffusion in air and water boundary layers, J. Chem. Eng. Data, 57, 3296–3302, doi:10.1021/JE300954S (2012).
  • Mackay, D. & Shiu, W. Y.: A critical review of Henry’s law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10, 1175–1199, doi:10.1063/1.555654 (1981).
  • Mackay, D., Shiu, W. Y., & Sutherland, R. P.: Determination of air–water Henry’s law constants for hydrophobic pollutants, Environ. Sci. Technol., 13, 333–337, doi:10.1021/ES60151A012 (1979).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. I of Introduction and Hydrocarbons, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006a).
  • Ma, Y.-G., Lei, Y. D., Xiao, H., Wania, F., & Wang, W.-H.: Critical review and recommended values for the physical-chemical property data of 15 polycyclic aromatic hydrocarbons at 25C, J. Chem. Eng. Data, 55, 819–825, doi:10.1021/JE900477X (2010b).
  • McCarty, P. L.: Organics in water – an engineering challenge, J. Environ. Eng. Div., 106, 1–17 (1980).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
  • Odabasi, M., Cetin, B., & Sofuoglu, A.: Henry’s law constant, octanol-air partition coefficient and supercooled liquid vapor pressure of carbazole as a function of temperature: Application to gas/particle partitioning in the atmosphere, Chemosphere, 62, 1087–1096, doi:10.1016/J.CHEMOSPHERE.2005.05.035 (2006).
  • Paasivirta, J., Sinkkonen, S., Mikkelson, P., Rantio, T., & Wania, F.: Estimation of vapor pressures, solubilities and Henry’s law constants of selected persistent organic pollutants as functions of temperature, Chemosphere, 39, 811–832, doi:10.1016/S0045-6535(99)00016-8 (1999).
  • Parnis, J. M., Mackay, D., & Harner, T.: Temperature dependence of Henry’s law constants and KOA for simple and heteroatom-substituted PAHs by COSMO-RS, Atmos. Environ., 110, 27–35, doi:10.1016/J.ATMOSENV.2015.03.032 (2015).
  • Ryan, J. A., Bell, R. M., Davidson, J. M., & O’Connor, G. A.: Plant uptake of non-ionic organic chemicals from soils, Chemosphere, 17, 2299–2323, doi:10.1016/0045-6535(88)90142-7 (1988).
  • Schröder, B., Santos, L. M. N. B. F., Rocha, M. A. A., Oliveira, M. B., Marrucho, I. M., & Coutinho, J. A. P.: Prediction of environmental parameters of polycyclic aromatic hydrocarbons with COSMO-RS, Chemosphere, 79, 821–829, doi:10.1016/J.CHEMOSPHERE.2010.02.059 (2010).
  • Schwardt, A., Dahmke, A., & Köber, R.: Henry’s law constants of volatile organic compounds between 0 and 95C – Data compilation and complementation in context of urban temperature increases of the subsurface, Chemosphere, 272, 129 858, doi:10.1016/J.CHEMOSPHERE.2021.129858 (2021).
  • Shiu, W. Y. & Ma, K.-C.: Temperature dependence of physical-chemical properties of selected chemicals of environmental interest. I. mononuclear and polynuclear aromatic hydrocarbons, J. Phys. Chem. Ref. Data, 29, 41–130, doi:10.1063/1.556055 (2000).
  • Shiu, W.-Y. & Mackay, D.: Henry’s law constants of selected aromatic hydrocarbons, alcohols, and ketones, J. Chem. Eng. Data, 42, 27–30, doi:10.1021/JE960218U (1997).
  • Smith, J. R., Neuhauser, E. F., Middleton, A. C., Cunningham, J. J., Weightman, R. L., & Linz, D. G.: Treatment of organically contaminated groundwaters in municipal activated sludge systems, Water Environ. Res., 65, 804–818, doi:10.2175/WER.65.7.2 (1993).
  • Southworth, G. R.: The role of volatilization in removing polycyclic aromatic hydrocarbons from aquatic environments, Bull. Environ. Contam. Toxicol., 21, 507–514, doi:10.1007/BF01685462 (1979).
  • Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
  • Wauchope, R. D. & Haque, R.: Aqueous solutions of nonpolar compounds. Heat-capacity effects, Can. J. Chem., 50, 133–138, doi:10.1139/V72-022 (1972).
  • Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
  • Zhang, Z. & Pawliszyn, J.: Headspace solid-phase microextraction, Anal. Chem., 65, 1843–1852, doi:10.1021/AC00062A008 (1993).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
12) Value at T = 293 K.
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
185) Value from the validation set for checking whether the model is satisfactory for compounds that are absent from the training set.
186) Experimental value, extracted from HENRYWIN.
233) Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details.
238) Value given here as quoted by Gharagheizi et al. (2010).
247) Calculated using a combination of a group contribution method and neural networks.
249) Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here.
250) Value from the training set.
259) Value given here as quoted by Dupeux et al. (2022).
260) Calculated using the COSMO-RS method.
295) Value at T = 294 K.
299) Value given here as quoted by Staudinger and Roberts (1996).
365) Calculated using the COSMO-RS method.
368) Literature-derived value.
369) Final adjusted value.
370) Value given here as quoted by Petrasek et al. (1983).
371) Calculated using COSMOtherm.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *