MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsHydrocarbons (C, H)Polynuclear aromatics → biphenyl

FORMULA:(C6H5)2
CAS RN:92-52-4
STRUCTURE
(FROM NIST):
InChIKey:ZUOUZKKEUPVFJK-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
3.6×10−2 7000 Brockbank (2013) L 1)
3.6×10−2 Mackay and Shiu (1981) L
3.4×10−2 Destaillats and Charles (2002) M
Dewulf et al. (1999) M 364)
3.2×10−2 Shiu and Mackay (1997) M
5.1×10−2 Fendinger and Glotfelty (1990) M
3.3×10−2 Mackay and Shiu (1981) M
2.4×10−2 Mackay et al. (1979) M
3.5×10−2 Mackay et al. (2006a) V
3.5×10−2 Mackay et al. (2006b) V
3.6×10−2 Shiu and Ma (2000) V
3.5×10−2 Shiu and Mackay (1997) V
3.6×10−2 Abraham et al. (1994a) V
1.9×10−2 Mackay et al. (1992a) V
1.2×10−2 Eastcott et al. (1988) V
1.9×10−2 Shiu and Mackay (1986) V
7.3×10−2 Burkhard et al. (1985) V
2.0×101 6200 Bopp (1983) V
3.5×10−2 Cabani et al. (1981) V
6.4×10−3 Mackay and Leinonen (1975) V
1.2×10−2 Bohon and Claussen (1951) V
7.6×10−3 2900 Paasivirta et al. (1999) T
1.7×10−2 Yaws (2003) X 259)
3.9×10−2 Dupeux et al. (2022) Q 260)
4.5×10−2 Keshavarz et al. (2022) Q
2.8×10−2 Duchowicz et al. (2020) Q 300)
4.5×10−2 Schröder et al. (2010) Q 365)
1.3×10−2 Hilal et al. (2008) Q
5.0×10−2 Modarresi et al. (2007) Q 68)
5100 Kühne et al. (2005) Q
3.7×10−2 Yaffe et al. (2003) Q 249) 250)
2.5×10−2 English and Carroll (2001) Q 231) 232)
4.4×10−4 Katritzky et al. (1998) Q
8.0×10−3 Nirmalakhandan and Speece (1988) Q
2.9×10−2 Arbuckle (1983) Q
3.2×10−2 Duchowicz et al. (2020) ? 21) 186)
6000 Kühne et al. (2005) ?
1.2×10−2 Yaws and Yang (1992) ? 21)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H., Andonian-Haftvan, J., Whiting, G. S., Leo, A., & Taft, R. S.: Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapours in water at 298 K, and a new method for its determination, J. Chem. Soc. Perkin Trans. 2, pp. 1777–1791, doi:10.1039/P29940001777 (1994a).
  • Arbuckle, W. B.: Estimating activity coefficients for use in calculating environmental parameters, Environ. Sci. Technol., 17, 537–542, doi:10.1021/ES00115A008 (1983).
  • Bohon, R. J. & Claussen, W. F.: The solubility of aromatic hydrocarbons in water, J. Am. Chem. Soc., 73, 1571–1578, doi:10.1021/JA01148A047 (1951).
  • Bopp, R. F.: Revised parameters for modeling the transport of PCB components across an air water interface, J. Geophys. Res., 88, 2521–2529, doi:10.1029/JC088IC04P02521 (1983).
  • Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
  • Burkhard, L. P., Armstrong, D. E., & Andren, A. W.: Henry’s law constants for the polychlorinated biphenyls, Environ. Sci. Technol., 19, 590–596, doi:10.1021/ES00137A002 (1985).
  • Cabani, S., Gianni, P., Mollica, V., & Lepori, L.: Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution, J. Solution Chem., 10, 563–595, doi:10.1007/BF00646936 (1981).
  • Destaillats, H. & Charles, M. J.: Henry’s law constants of carbonyl-pentafluorobenzyl hydroxylamine (PFBHA) derivatives in aqueous solution, J. Chem. Eng. Data, 47, 1481–1487, doi:10.1021/JE025545I (2002).
  • Dewulf, J., van Langenhove, H., & Everaert, P.: Determination of Henry’s law coefficients by combination of the equilibrium partitioning in closed systems and solid-phase microextraction techniques, J. Chromatogr. A, 830, 353–363, doi:10.1016/S0021-9673(98)00877-2 (1999).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Dupeux, T., Gaudin, T., Marteau-Roussy, C., Aubry, J.-M., & Nardello-Rataj, V.: COSMO-RS as an effective tool for predicting the physicochemical properties of fragrance raw materials, Flavour Fragrance J., 37, 106–120, doi:10.1002/FFJ.3690 (2022).
  • Eastcott, L., Shiu, W. Y., & Mackay, D.: Environmentally relevant physical-chemical properties of hydrocarbons: A review of data and development of simple correlations, Oil Chem. Pollut., 4, 191–216, doi:10.1016/S0269-8579(88)80020-0 (1988).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Fendinger, N. J. & Glotfelty, D. E.: Henry’s law constants for selected pesticides, PAHs and PCBs, Environ. Toxicol. Chem., 9, 731–735, doi:10.1002/ETC.5620090606 (1990).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Mackay, D. & Leinonen, P. J.: Rate of evaporation of low-solubility contaminants from water bodies to atmosphere, Environ. Sci. Technol., 9, 1178–1180, doi:10.1021/ES60111A012 (1975).
  • Mackay, D. & Shiu, W. Y.: A critical review of Henry’s law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10, 1175–1199, doi:10.1063/1.555654 (1981).
  • Mackay, D., Shiu, W. Y., & Sutherland, R. P.: Determination of air–water Henry’s law constants for hydrophobic pollutants, Environ. Sci. Technol., 13, 333–337, doi:10.1021/ES60151A012 (1979).
  • Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. I of Monoaromatic Hydrocarbons, Chlorobenzenes, and PCBs, Lewis Publishers, Boca Raton, ISBN 0873715136 (1992a).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. I of Introduction and Hydrocarbons, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006a).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. II of Halogenated Hydrocarbons, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006b).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
  • Paasivirta, J., Sinkkonen, S., Mikkelson, P., Rantio, T., & Wania, F.: Estimation of vapor pressures, solubilities and Henry’s law constants of selected persistent organic pollutants as functions of temperature, Chemosphere, 39, 811–832, doi:10.1016/S0045-6535(99)00016-8 (1999).
  • Schröder, B., Santos, L. M. N. B. F., Rocha, M. A. A., Oliveira, M. B., Marrucho, I. M., & Coutinho, J. A. P.: Prediction of environmental parameters of polycyclic aromatic hydrocarbons with COSMO-RS, Chemosphere, 79, 821–829, doi:10.1016/J.CHEMOSPHERE.2010.02.059 (2010).
  • Shiu, W. Y. & Ma, K.-C.: Temperature dependence of physical-chemical properties of selected chemicals of environmental interest. I. mononuclear and polynuclear aromatic hydrocarbons, J. Phys. Chem. Ref. Data, 29, 41–130, doi:10.1063/1.556055 (2000).
  • Shiu, W. Y. & Mackay, D.: A critical review of aqueous solubilities, vapor pressures, Henry’s law constants, and octanol-water partition coefficients of the polychlorinated biphenyls, J. Phys. Chem. Ref. Data, 15, 911–929, doi:10.1063/1.555755 (1986).
  • Shiu, W.-Y. & Mackay, D.: Henry’s law constants of selected aromatic hydrocarbons, alcohols, and ketones, J. Chem. Eng. Data, 42, 27–30, doi:10.1021/JE960218U (1997).
  • Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
  • Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
186) Experimental value, extracted from HENRYWIN.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
232) Value from the training dataset.
249) Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here.
250) Value from the training set.
259) Value given here as quoted by Dupeux et al. (2022).
260) Calculated using the COSMO-RS method.
300) Value from the test set for true external validation.
364) The values of Dewulf et al. (1999) are not used here because, according to them, the calculated regression does not match the theoretical expectation for this species.
365) Calculated using the COSMO-RS method.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *