MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with fluorine (F)Organic fluorine → 1,1,1,3,3,3-hexafluoro-2-propanol

FORMULA:CF3CHOHCF3
CAS RN:920-66-1
STRUCTURE
(FROM NIST):
InChIKey:BYEAHWXPCBROCE-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
1.0×10−1 Eger et al. (1999) M 14)
2.4×10−1 6700 Rochester and Symonds (1973) M
4.6×10−1 Keshavarz et al. (2022) Q
2.2 Duchowicz et al. (2020) Q
1.6×10−1 Raventos-Duran et al. (2010) Q 243) 244)
2.0×10−2 Raventos-Duran et al. (2010) Q 245)
3.1×10−2 Raventos-Duran et al. (2010) Q 246)
2.5×10−2 Hilal et al. (2008) Q
2.6×10−1 Modarresi et al. (2007) Q 68)
6800 Kühne et al. (2005) Q
2.4×10−1 Goss (2005) Q 631)
2.3×10−1 Nirmalakhandan and Speece (1988) Q
2.3×10−1 Duchowicz et al. (2020) ? 21) 186)
6700 Kühne et al. (2005) ?
2.3×10−1 Abraham et al. (1990) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Eger, II, E. I., Ionescu, P., Laster, M. J., Gong, D., Hudlicky, T., Kendig, J. J., Harris, R. A., Trudell, J. R., & Pohorille, A.: Minimum alveolar anesthetic concentration of fluorinated alkanols in rats: relevance to theories of narcosis, Anesth. Analg., 88, 867–876, doi:10.1213/00000539-199904000-00035 (1999).
  • Goss, K.-U.: Predicting the equilibrium partitioning of organic compounds using just one linear solvation energy relationship (LSER), Fluid Phase Equilib., 233, 19–22, doi:10.1016/J.FLUID.2005.04.006 (2005).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
  • Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
  • Rochester, H. & Symonds, J. R.: Thermodynamic studies of fluoroalcohols. Part 3. – The thermodynamics of transfer of five fluoroalcohols from the gas-phase to aqueous solution, J. Chem. Soc. Faraday Trans. 1, 69, 1577–1585, doi:10.1039/F19736901577 (1973).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

14) Value at T = 310 K.
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
186) Experimental value, extracted from HENRYWIN.
243) Value from the training dataset.
244) Calculated using the GROMHE model.
245) Calculated using the SPARC approach.
246) Calculated using the HENRYWIN method.
631) Comparing with Abraham et al. (1994a), it seems that the compound called "hexafluoropropanol" by Goss (2005) refers to 1,1,1,3,3,3-hexafluoro-2-propanol.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *