MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with oxygen (O)Alcohols (ROH) → 1-hydroxy-2-methylbenzene

FORMULA:HOC6H4CH3
TRIVIAL NAME: 2-cresol; o-cresol
CAS RN:95-48-7
STRUCTURE
(FROM NIST):
InChIKey:QWVGKYWNOKOFNN-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
6.7 7400 Brockbank (2013) L 1)
6.5 Chao et al. (2017) M
4.2 8500 Feigenbrugel et al. (2004b) M
1.1×101 6700 Harrison et al. (2002) M
6.3 Altschuh et al. (1999) M
5.6 5800 Dohnal and Fenclová (1995) M
7.1 Tremp et al. (1993) M 12)
8.2 7300 Parsons et al. (1972) M 419)
5.8 Chao et al. (2017) V
Mackay et al. (2006c) V 422)
6.2 Lide and Frederikse (1995) V
6.4 Mackay et al. (1995) V
3.5×101 Leuenberger et al. (1985) V 418)
8.8 Yaws (2003) X 259)
2.6 4600 Janini and Quaddora (1986) X 299)
6.2 Howard (1989) X 420)
8.2 Gaffney and Senum (1984) X 391)
8.3 Schüürmann (2000) C 21)
8.4 Dupeux et al. (2022) Q 260)
5.9 Keshavarz et al. (2022) Q
2.3×101 Duchowicz et al. (2020) Q
3.9×101 Wang et al. (2017) Q 81) 239)
1.2×101 Wang et al. (2017) Q 81) 240)
1.1×101 Wang et al. (2017) Q 81) 241)
8.0 Li et al. (2014) Q 242)
1.2×101 Gharagheizi et al. (2012) Q
5.3 Hilal et al. (2008) Q
6.2 Modarresi et al. (2007) Q 68)
6500 Kühne et al. (2005) Q
8.8 Yaffe et al. (2003) Q 249) 250)
9.9 Yao et al. (2002) Q 230) 268)
9.5 English and Carroll (2001) Q 231) 232)
4.6 Katritzky et al. (1998) Q
1.5×101 Suzuki et al. (1992) Q 233)
7.2 Nirmalakhandan and Speece (1988) Q
8.2 Duchowicz et al. (2020) ? 21) 186)
8100 Kühne et al. (2005) ?
5.8 Yaws (1999) ? 12) 21)
1.2×101 Yaws and Yang (1992) ? 12) 21)
8.0 Abraham et al. (1990) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Altschuh, J., Brüggemann, R., Santl, H., Eichinger, G., & Piringer, O. G.: Henry’s law constants for a diverse set of organic chemicals: Experimental determination and comparison of estimation methods, Chemosphere, 39, 1871–1887, doi:10.1016/S0045-6535(99)00082-X (1999).
  • Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
  • Chao, H.-P., Lee, J.-F., & Chiou, C. T.: Determination of the Henry’s law constants of low-volatility compounds via the measured air-phase transfer coefficients, Wat. Res., 120, 238–244, doi:10.1016/J.WATRES.2017.04.074 (2017).
  • Dohnal, V. & Fenclová, D.: Air–water partitioning and aqueous solubility of phenols, J. Chem. Eng. Data, 40, 478–483, doi:10.1021/JE00018A027 (1995).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Dupeux, T., Gaudin, T., Marteau-Roussy, C., Aubry, J.-M., & Nardello-Rataj, V.: COSMO-RS as an effective tool for predicting the physicochemical properties of fragrance raw materials, Flavour Fragrance J., 37, 106–120, doi:10.1002/FFJ.3690 (2022).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Feigenbrugel, V., Le Calvé, S., Mirabel, P., & Louis, F.: Henry’s law constant measurements for phenol, o-, m-, and p-cresol as a function of temperature, Atmos. Environ., 38, 5577–5588, doi:10.1016/J.ATMOSENV.2004.06.025 (2004b).
  • Gaffney, J. S. & Senum, G. I.: Peroxides, peracids, aldehydes, and PANs and their links to natural and anthropogenic organic sources, in: Gas-Liquid Chemistry of Natural Waters, edited by Newman, L., pp. 5–1–5–7, NTIS TIC-4500, UC-11, BNL 51757 Brookhaven National Laboratory (1984).
  • Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
  • Harrison, M. A. J., Cape, J. N., & Heal, M. R.: Experimentally determined Henry’s Law coefficients of phenol, 2-methylphenol and 2-nitrophenol in the temperature range 281-302 K, Atmos. Environ., 36, 1843–1851, doi:10.1016/S1352-2310(02)00137-1 (2002).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Howard, P. H.: Handbook of Environmental fate and exposure data for organic chemicals. Vol. I: Large production and priority pollutants, Lewis Publishers Inc. Chelsea, Michigan, ISBN 0873711513 (1989).
  • Janini, G. M. & Quaddora, L. A.: Determination of activity coefficients of oxygenated hydrocarbons by liquid-liquid chromatography, J. Liq. Chromatogr., 9, 39–53, doi:10.1080/01483918608076621 (1986).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Leuenberger, C., Ligocki, M. P., & Pankow, J. F.: Trace organic compounds in rain: 4. Identities, concentrations, and scavenging mechanisms for phenols in urban air and rain, Environ. Sci. Technol., 19, 1053–1058, doi:10.1021/ES00141A005 (1985).
  • Lide, D. R. & Frederikse, H. P. R.: CRC Handbook of Chemistry and Physics, 76th Edition, CRC Press, Inc., Boca Raton, FL, ISBN 0849304768 (1995).
  • Li, H., Wang, X., Yi, T., Xu, Z., & Liu, X.: Prediction of Henry’s law constants for organic compounds using multilayer feedforward neural networks based on linear salvation energy relationship, J. Chem. Pharm. Res., 6, 1557–1564 (2014).
  • Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. IV of Oxygen, Nitrogen, and Sulfur Containing Compounds, Lewis Publishers, Boca Raton, ISBN 1566700353 (1995).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Oxygen Containing Compounds, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006c).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
  • Parsons, G. H., Rochester, C. H., Rostron, A., & Sykes, P. C.: The thermodynamics of hydration of phenols, J. Chem. Soc. Perkin Trans. 2, pp. 136–138, doi:10.1039/P29720000136 (1972).
  • Schüürmann, G.: Prediction of Henry’s law constant of benzene derivatives using quantum chemical continuum-solvation models, J. Comput. Chem., 21, 17–34, doi:10.1002/(SICI)1096-987X(20000115)21:1<17::AID-JCC3>3.0.CO;2-5 (2000).
  • Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
  • Tremp, J., Mattrel, P., Fingler, S., & Giger, W.: Phenols and nitrophenols as tropospheric pollutants: Emissions from automobile exhausts and phase transfer in the atmosphere, Water Air Soil Pollut., 68, 113–123, doi:10.1007/BF00479396 (1993).
  • Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
  • Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
  • Yao, X., aand X. Zhang, M. L., Hu, Z., & Fan, B.: Radial basis function network-based quantitative structure-property relationship for the prediction of Henry’s law constant, Anal. Chim. Acta, 462, 101–117, doi:10.1016/S0003-2670(02)00273-8 (2002).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
  • Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
12) Value at T = 293 K.
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
81) Value at T = 288 K.
186) Experimental value, extracted from HENRYWIN.
230) Yao et al. (2002) compared two QSPR methods and found that radial basis function networks (RBFNs) are better than multiple linear regression. In their paper, they provide neither a definition nor the unit of their Henry's law constants. Comparing the values with those that they cite from Yaws (1999), it is assumed that they use the variant Hvpx and the unit atm.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
232) Value from the training dataset.
233) Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details.
239) Calculated using linear free energy relationships (LFERs).
240) Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC).
241) Calculated using COSMOtherm.
242) Temperature is not specified.
249) Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here.
250) Value from the training set.
259) Value given here as quoted by Dupeux et al. (2022).
260) Calculated using the COSMO-RS method.
268) Value from the test set.
299) Value given here as quoted by Staudinger and Roberts (1996).
391) Value given here as quoted by Gaffney et al. (1987).
418) Value at T = 281 K.
419) It is assumed here that the thermodynamic data refer to the units [mol dm−3] and [atm] as standard states.
420) Value given here as quoted by Shiu et al. (1994).
422) Mackay et al. (2006c) list a vapor pressure p, a solubility c, and a Henry's law constant calculated as p/c. However, the data are internally inconsistent and deviate by more than 10 %.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *